Publications

Publications

Real-time visualization and quantitation of vascular permeability in vivo: implications for drug delivery.

By:
Contributors: Andries Zijlstra Research Group, John D. Lewis Research Group, Desmond Pink, PhD
PLoS One. 2012;7(3):e33760. doi: 10.1371/journal.pone.0033760. Epub 2012 Mar 29.

Abstract

The leaky, heterogeneous vasculature of human tumors prevents the even distribution of systemic drugs within cancer tissues. However, techniques for studying vascular delivery systems in vivo often require complex mammalian models and time-consuming, surgical protocols. The developing chicken embryo is a well-established model for human cancer that is easily accessible for tumor imaging. To assess this model for the in vivo analysis of tumor permeability, human tumors were grown on the chorioallantoic membrane (CAM), a thin vascular membrane which overlays the growing chick embryo. The real-time movement of small fluorescent dextrans through the tumor vasculature and surrounding tissues were used to measure vascular leak within tumor xenografts. Dextran extravasation within tumor sites was selectively enhanced an interleukin-2 (IL-2) peptide fragment or vascular endothelial growth factor (VEGF). VEGF treatment increased vascular leak in the tumor core relative to surrounding normal tissue and increased doxorubicin uptake in human tumor xenografts. This new system easily visualizes vascular permeability changes in vivo and suggests that vascular permeability may be manipulated to improve chemotherapeutic targeting to tumors.

PubMed

Download PDF

goes to…APCaRI member Russ Greiner

Image of DREAM challenge winners, Russ Greiner pictured on far left.

Dr. Russ Greiner, Canada CIFAR AI Chair, Fellow-in-Residence at Amii, University of Alberta Professor, and APCaRI member, received the CAIAC Lifetime Achievement Award announced at the Canadian AI Conference on May 27, 2021. This the highest honour bestowed by CAIAC, given in recognition to researchers who have distinguished themselves through outstanding research excellence in AI during the course of their academic career. APCaRI congratulates Russ Greiner for his well-deserved CAIAC Lifetime Achievement Award!

“Using machine learning techniques to produce effective, evidence-based personalized treatment”

The main foci of Russ Greiner’s current work are (1) bioinformatics and medical informatics; (2) learning and using effective probabilistic models and (3) formal foundations of learnability. He has published over 200 refereed papers and patents, most in the areas of machine learning and knowledge representation, including 4 that have been awarded Best Paper prizes.

One of these four papers was an entry into an international machine learning competition hosted by DREAM, an open-science effort dedicated to improving health and health care through crowdsourcing problem-solving. DREAM’s challenge was to develop an algorithm to predict which prostate cancer patients would respond to certain treatments and which would follow the medication regimen. The algorithm could be used by clinicians to help chose the best treatment plans for the patient.

Greiner and a team of students tied for the top place in the competition against over 50 teams from around the world. Then the winners collaborated to create an even better solution to the problem!

 

 

 

 

 

 

- Perrin Beatty