Publications

Important Features Identification for Prostate Cancer Patients Stratification Using Isolation Forest and Interactive Clustering Method

Important Features Identification for Prostate Cancer Patients Stratification Using Isolation Forest and Interactive Clustering Method

E. A. Mohammed, E. Shakeri, H. A. Z. Shakeri, T. Crump and B. Far, “Important Features Identification for Prostate Cancer Patients Stratification Using Isolation Forest and Interactive Clustering Method,” 2021 IEEE 22nd International Conference on Information Reuse and Integration for Data Science (IRI), 2021, pp. 334-341, doi: 10.1109/IRI51335.2021.00052.
Date of Conference: 10-12 Aug. 2021
Date Added to IEEE Xplore17 November 2021

Abstract:

Prostate-specific Antigen (PSA) levels are commonly used to screen prostate cancer patients. However, because of the wide range of PSA levels in men, the classification results pertain to extensive false positives and false negatives that may impact the patient treatment. This paper presents a method to cluster prostate cancer patient clinical and demographics data into homogenous groups to support prostate cancer patients’ classification with high accuracy. The proposed method is based on the isolation forest and interactive (two-step) clustering algorithm. We further analyze each group for commonalities and differences. The dataset used in this paper is collected from participants enrolled in the Alberta Prostate Cancer Research Initiative (APCaRI) study, which includes (after pre-processing) 2,878 patients with 20 clinical and demographics variables. The APCaRI study enrolled the population of men undergoing prostate cancer diagnosis in Calgary and Edmonton, Canada. These patients are referred for a diagnostic biopsy based on conventional clinical guidelines (e.g., elevated PSA or abnormal digital rectal examination). The data contains three different PSA levels measured at three follow-up times and the initial screening PSA level. The analysis results show that the PSA levels are a significant factor within each group, and there is a significant overlap between PSA levels between groups, and it may not be the best factor to classify prostate cancer patients. The data’s majority group has PSA levels (10.83%, 10.44%, and 10.14%) smaller than the remaining groups. This paper concludes that it is maybe better to design an independent classifier per group to identify prostate cancer patients from clinical and demographics data.
ISBN Information:
INSPEC Accession Number: 21299876
Publisher: IEEE
Conference Location: Las Vegas, NV, USA

APCaRI 2016 Fall Symposium

On Oct. 20-21, 2016, APCaRI will celebrate its 7th research meeting at the Banff Park Lodge, Alberta.

Over 60 participants including clinicians, scientists, clinical research personnel, trainees, benefactors and representatives of PCa support groups will participate in this fun and enriching event.

The team will benefit from the insight and experience that will be shared by keynote speakers: Drs. Edwin Wang, Professor Depts. of Biochemistry & Molecular Biology, Medical Genetics, and Oncology, McGill University;Roy Duncan, Dept. Microbiology & Immunology and Biochemistry and Pediatrics, Dalhousie University; Susan J. Done, Associate Professor, Departments of Laboratory Medicine and Pathobiology and Medical Biophysics, University of Toronto; and Christopher Bown, Gowlings

In addition, we will have 4 talks from senior scientists Drs. Juan Jovel (Dept Medicine, U of A), Len Luyt (Chemistry Department, U of A), Andries Zijlstra (Dept. of Pathology, Microbiology, and Immunology, Vanderbilt University), Desmond Pink (Dept Oncology, U of A) and John Lewis (Dept Oncology, U of A), and 16 short talks from trainees from different institutions in the province.

Agenda-APCaRI-2016-fall-symposium

Generously supported by the Bird Dogs and the Alberta Cancer Foundation

- Catalian Vasquez