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Clustering is an essential research problem which has received considerable attention in the research
community for decades. It is a challenge because there is no unique solution that fits all problems and
satisfies all applications. We target to get the most appropriate clustering solution for a given application
domain. In other words, clustering algorithms in general need prior specification of the number of clus-
ters, and this is hard even for domain experts to estimate especially in a dynamic environment where the
data changes and/or become available incrementally. In this paper, we described and analyze the effec-
tiveness of a robust clustering algorithm which integrates multi-objective genetic algorithm into a frame-
work capable of producing alternative clustering solutions; it is called Multi-objective K-Means Genetic
Algorithm (MOKGA). We investigate its application for clustering a variety of datasets, including micro-
array gene expression data. The reported results are promising. Though we concentrate on gene expres-
sion and mostly cancer data, the proposed approach is general enough and works equally to cluster other
datasets as demonstrated by the two datasets Iris and Ruspini. After running MOKGA, a pareto-optimal
front is obtained, and gives the optimal number of clusters as a solution set. The achieved clustering
results are then analyzed and validated under several cluster validity techniques proposed in the litera-
ture. As a result, the optimal clusters are ranked for each validity index. We apply majority voting to
decide on the most appropriate set of validity indexes applicable to every tested dataset. The proposed
clustering approach is tested by conducting experiments using seven well cited benchmark data sets.
The obtained results are compared with those reported in the literature to demonstrate the applicability
and effectiveness of the proposed approach.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

A multi-objective genetic algorithm based clustering method is
described in this paper. Its applicability and effectiveness are
demonstrated by using some benchmark datasets, mainly related
to gene expression data analysis which constitutes a vital research
area of social and scientific impacts. Fortunately, clustering is one of
the key methods that can be employed to the benefit of the
computational biology and bioinformatics research communities.
It allows researchers to identify molecules that demonstrate similar
behavior or characteristics and hence could lead to utilizing in the
analysis reduced set of molecules by considering representatives
from each cluster instead of the whole original set of molecules.

In general, existing clustering techniques require pre-
specification of the number of clusters or some parameters that
indirectly lead to the number of clusters; and these are is not an
easy to predict a prior even for experts. Thus, the problem handled
in this paper may be articulated as follows: Given a set of data
instances (we mainly concentrate on gene expression data), it is
required to develop an approach that produces different alterna-
tive solutions, and then rank the resulting solutions by conducting
validity analysis. In fact, there are always some trade-offs between
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the quality of a clustering result and the number of clusters. One
solution is to view the two elements as two objectives that affect
clustering results, i.e., this is naturally a multi-objective optimiza-
tion problem. The solution of a multi-objective optimization
problem is a set of alternatives which in one way can be seen as
a Pareto-optimal set or non-dominated set [52].

In general, traditional algorithms for clustering microarray data
do not produce the Pareto optimal set, and they do not lead to the
optimal number of clusters in the database that they work on. For
example, the hierarchical clustering method can get the heuristic
overview of a whole dataset, but it cannot relocate objects that
may have been ‘incorrectly’ grouped at an early stage. It can nei-
ther tell the optimal number of clusters nor give the non-domi-
nated set. Partitional clustering like K-means needs the number
of clusters as a predefined parameter, and it may lead to local opti-
mal solutions because it concentrates on a local search from a ran-
dom initial partitioning. SOM has the same disadvantage in that it
requires the number of clusters as a prior. Clearly, a more advanced
and comprehensive clustering algorithm is needed to get the global
pareto-optimal solution set required to give users the best over-
view of the whole dataset according to the number of clusters
and their quality. Further, it is required to get clustering results
with the optimal number of clusters.

Clustering different samples based on gene expression is one of
the key issues in problems like class discovery, normal and tumor
tissue classification, and drug treatment evaluation [1,69]. Scherf
et al. [58] applied microarray analysis on the gene expression data-
base for the molecular pharmacology of cancer. It contains 728
genes, 60 cell lines, and 15 cell line groups. Golub et al. [17] applied
SOM clustering algorithm on gene expression data containing 38
acute leukemia samples and 50 genes after filtered the whole data-
set. SOM automatically grouped the 38 samples into two classes
with acute myeloid leukemia (ALL) and acute lymphoblastic leuke-
mia (AML). They further used SOM to group the samples into four
classes. Subclasses of ALL, namely, B-lineage ALL and T-lineage ALL
were distinguished [17]. It has been indicated that clustering sam-
ples can be used to identify fundamental subtypes of any cancer [58].

Clustering analysis can also be used to find direct gene-sample
correlations. BiCluster [13] enables Gene/Condition correlation
analysis that can lead to molecular classification of disease states,
identification of co-fluctuation of functionally related genes, func-
tional groupings of genes, and logical descriptions of gene regula-
tion, among others. It is a starting point for understanding the
large-scale network [13,44]. Domany [15] proposed a Coupled
Two-Way Clustering (CTWC), which breaks down the total dataset
into subsets of genes and samples that can reveal significant parti-
tions into clusters. It provides clues about the function of genes and
their roles in various pathologies.

The main contribution of this paper is a comprehensive and
general purpose clustering approach that considers multiple objec-
tives in the process and its application for clustering microarray
data. The proposed approach has two components:

1. Multi-objective K-means Genetic Algorithm (MOKGA)
based clustering approach has been developed to deliver
a Pareto optimal clustering solution set without taking
weight values into account. Otherwise, users need to
consider several trials weighting with different values
until a satisfactory result is obtained.

2. Cluster validity analysis and voting technique have been
employed to evaluate the obtained candidate optimal
number of clusters, by applying some of the well-known
cluster validity techniques, namely Silhouette, C index,
Dunn’s index, DB index, SD index and S-Dbw index, to
the clustering results obtained from MOKGA. It gives one
or more options for the optimal number of clusters.
The applicability and effectiveness of the described clustering
approach and clustering validity analysis process are demonstrated
by conducting experiments using seven datasets from various do-
mains: two breast cancer datasets, namely GSE12093 and
GSE9195, Fig2data, NCI60 cancer data, Leukemia data sets avail-
able at Genomics Department of Stanford University, UCI machine
learning repository, Iris at Genome Research MIT and Ruspini
dataset.

The balance of the paper is organized as follows. Section 2 is an
overview of the clustering approaches used primarily in the
microarray data analysis area. Section 3 is devoted to the develop-
ment of the new clustering system MOKGA for clustering both
gene expression and general datasets. Section 4 reports experi-
mental results on five datasets to test the applicability, perfor-
mance, and efficiency of the system. Section 5 discusses the
advantages and disadvantages of the proposed approach in com-
parison with other existing methods; conclusions are made and fu-
ture research directions are suggested.

2. Related work

Existing clustering techniques which have been used for gene
expression data can be classified into hierarchical clustering
[28,48], partitioning [33], graph-based [44] and model-based
[61,67] approaches.

Hierarchical clustering algorithms have been widely used in the
area of gene expression data analysis. For example, Waddell and
Kishino [67] applied hierarchical clustering based on partial corre-
lations on NC160 gene expression data to find a tight and closed set
of genes, and the interaction of important genes of the cell cycle. A
tree structure dendogram is used to illustrate the hierarchical clus-
tering [20,28,48]. Hierarchical clustering methods suffer from dif-
ferent aspects as stated by statisticians, including robustness,
non-uniqueness, and inverse interpretation of the hierarchy
[45,63]. Segal and Koller [59] proposed probabilistic abstraction
hierarchies (PAH). This method improved the performance of tradi-
tional hierarchical clustering by handling the drawbacks men-
tioned above.

K-Means is a commonly used algorithm for partition clustering
[33]. The purpose of K-Means clustering is the optimization of an
objective function that is described by the equation:

E ¼
Xc

i¼1

X
x2Ci

dðx;miÞ ð2:1Þ

where mi is the center of cluster Ci, and d(x,mi) is the Euclidean dis-
tance between a point x and mi. It can be seen that the criterion
function attempts to minimize the distance between each point
and the center of its cluster.

Self Organizing Maps (SOM) [30] is popular in vector quantiza-
tion. It uses an incremental approach; points (patterns) are pro-
cessed one-by-one. The shortcoming of SOM is that the size of
the two dimensional grid and the number of nodes have to be pre-
determined. It suits well when prior information about data distri-
bution is not available. Double self organizing maps (DSOM)
technique [68] is also used for gene expression data clustering. In
DSOM, each node does not have only an n-dimensional synaptic
weight vector, but also a 2-dimensional position vector.

The model-based approach [53] is a promising technique, which
assumes that data are generated by a mixture of finite number of
probability distributions. In this approach, each cluster represents
a probability distribution and a likelihood-based framework can be
used. The Bayesian method is a model-based approach used in
gene expression data analysis. Barash et al. [2,3] applied the Bayes-
ian method on gene-expression time series data to study the re-
sponse of human fibroblasts to serum. Gaussian mixture model is
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used in the method. They found the dynamic nature of gene
expression time series during clustering. Mar and McLachlan [39]
proposed a mixture model-based algorithm (EMMIX-GENE) for
the clustering of tissue samples and presented a case study involv-
ing the application of EMMIX-GENE to breast cancer data.

Graph-based clustering methods translate a clustering problem
into a graph partitioning problem by creating a weighted similarity
graph and linking each gene to other genes that are more than
some threshold similar to it [4]. The study by Ben et al. [4] tries
to make cliques for the clustering purpose. Examples of this
approach are the Two-Way Clustering Binary tree [13] and the
Coupled Two-Way Clustering [53].

After data clustering and data partitioning into subgroups, the
validity of the result must be checked [46]. Levine introduced a
cluster validation method based on resampling [34]. Roth [54]
tested the stability by clustering two sets of equal size data sam-
pled from 2n size source data and calculated the rates that the
algorithm clusters the same object into different clusters. A slight
modification of the noise may then alter the cluster structure sig-
nificantly. The disadvantage of this method is that it is unsuitable
for very sparse data. In this case, dilution can eliminate some of the
underlying models [6,34].

Bootstrapping cluster analysis begins by creating a number of
simulated datasets based on statistical models, such as the analysis
of variance (ANOVA) model [31]. Other widely accepted criteria
used by clustering algorithms are compactness of the clusters and
their separateness. These criteria should be validated and optimal
clusters should be found such that the correct input parameters
must be given to the satisfaction of optimal clusters. Some cluster-
ing validity techniques used for the validation task include Dunn in-
dex [64], Davies–Bouldin (DB) index [8], Silhouette index [25], C
index [66], SD index [43] and S_Dbw index [17], among others.
Dunn’s index uses the dispersion parameter, which is prone to noise
since it uses the maximum of pairwise distance of objects in the
same cluster as a parameter. Davies–Bouldin (DB) uses the ratio of
scattering (uses Euclidean distance to calculate the scattering ratio)
of objects within a cluster and the scattering of cluster centers. It
considers the average case by using the average error of each class.

C-index uses the within cluster pairwise dissimilarity. Further,
according to the number of pairs in the within cluster pairs, mini-
mum and maximum summation of the number of pairwise object
distance parameters are used in the calculation. However, this
method is not recommended since it is likely to be data dependent
[7]. Examples of other cluster validity approaches used in gene
expression data analysis include Principal Component Analysis
(PCA) [5] and Gap statistic [65]. PCA is a statistical method that
can improve the extraction of cluster structure and compare clus-
tering solutions [5]. Gap statistic utilizes within-cluster distance to
determine the ‘‘appropriate’’ number of clusters in a dataset. It is
good at identifying well-separated clusters, but it does not produce
satisfactory results for not-well-separated data and data concen-
trated on a subspace [21].

Our proposed Multi-object GA based clustering algorithm has
the salient randomization feature that originates from the classical
k-means algorithm where random sampling of object is needed at
the start of the clustering process and quality metric converges
iteratively. A randomized clustering is essentially a stochastic pro-
cess, i.e., clustering data objects or observations with the belief that
events occur in random orders [19,41]. Even properties of data are
unknown; the assumption that it follows certain stochastic behav-
ior typically suffices to achieve unsupervised learning goals. In the
machine learning direction, where objects or observations are ta-
ken globally without distribution estimation, randomization typi-
cally means a good sampling process stemmed from prior
knowledge of data [26]. Convergence in randomized clustering
process is crucial because it specifies termination condition of
the process [60] and can be useful in genetic algorithm based clus-
tering methods [42,47]. In data distribution direction, observations
are gauged to fit certain probabilistic distribution such as Gaussian
or Mixed Gaussian, and clustering process is statistical manipula-
tions on distributions [62,23,9].

The method described in this paper assumes that a clustering
process may have several objectives by nature. So, it is difficult
to find the optimal solution to the satisfaction of all the objectives.
Rather than using a fixed threshold value and/or a prior specified
fixed number of clusters, this paper is keen on giving a range for
the number of clusters parameter and finding a set constituting
pareto optimal solution to find the superior results in the sense
that there is no other point which can be superior to the pareto-
optimal solution. This idea differs from traditional multi-objective
algorithms that scalarize the objectives by assigning subjective
weights to each function, e.g., [11,14,16,24,35,40,57]. Hence, we
do not need to consider weights in the system. In addition, using
a genetic algorithm with recombination and mutation, we can find
the global optimum solution using appropriate system parameters.
We have already demonstrated the benefit of the methodology de-
scribed in this paper to some interesting applications like data par-
titioning for skyline computation [51] and fuzzy association rules
mining [29,32]. Finally, to allow for scalability, we have utilized
the divide and conquer concept to partition the data into subsets
where each subset is manageable by a single traditional machine
[49,50]. Then, the final solution is achieved by combining the par-
tial solutions in a hierarchical way where after clustering the sub-
sets individually, we concenrtate on clustering the centroids in
order to incrementally combine the solutions.

In summary, the method presented and analyzed in this paper
is unique in presenting the set of solutions in the pareto optimal
front and analyzing their validity to select the most approporiate
from all valid candidate solutions. The comparison of the results
of validity analysis with the known single results reported in the
literature for each considered data set supports the applicability
and effectiveness of the approach described in this paper.
3. Description of the proposed approach

A clustering approach named Multi-Objective Genetic K-means
algorithm (MOKGA) is described here. It is a general-purpose ap-
proach for clustering datasets from various domains as demon-
strated by the test results reported in Section 4. It has been
developed on the basis of the Fast Genetic K-means Algorithm
(FGKA) [38] and the Niched Pareto Genetic Algorithm [22].

After running the multi-objective K-means genetic algorithm,
the Pareto-optimal front giving the optimal number of clusters as
a solution set can be obtained. The system then analyzes the clus-
tering results found with respect to various cluster validity tech-
niques proposed in the literature, namely Silhoutte, C index,
Dunn’s index, SD index, DB index, and S_Dbw index. These tech-
niques have been chosen arbitrarily. Other techniques may be used
without affecting the overall outcome because the target is
achieved by applying majority voting.

This section is organized as follows. The objectives of the Multi-
Objective Genetic K-means algorithm (MOKGA) are discussed in
Section 3.1. The chromosome representation process in MOKGA is
introduced in Section 3.2. Section 3.3 presents the fitness evaluation
and selection. Section 3.4 discusses the mutation and cross-over
operations. Implementation details are described in Section 3.5.
3.1. The utilized objectives

During the clustering process three objective functions are de-
fined, namely maximizing homogeneity and separateness and
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minimizing the number of clusters. These objectives do conflict as
the number of clusters decreases, the values of the other two
objectives will be negatively affected. In other words, the first
two objectives are defined as: minimizing the partitioning error
and minimizing the number of clusters. To partition the N objects
into K clusters, one goal is to minimize the Total Within-Cluster
Variation (TWCV) and maximize the separateness of the clusters.
The value of TWCV is computed as:

TWCV ¼
XN

n¼1

XD

d¼1

X2
nd �

XK

k¼1

1
Zk

XD

d¼1

SF2
kd ð3:1Þ

where X1, X2, . . . , XN are the N objects, Xnd denotes feature d of ob-
ject Xn (n = 1 to N), Zk denotes the number of objects in cluster k,
and SFkd is the sum of the dth features of all the objects in cluster k:

SFkd ¼
X

xn
!
2Gk

Xnd; ðd ¼ 1;2; . . . DÞ: ð3:2Þ

Separateness of clusters is measured using one of the following
four equations:

Centroid Linkage : dðC;DÞ¼dðvC ;vDÞ ð3:3Þ
Complete Linkage : dðC;DÞ¼ max

x2C;y2D
dðx;yÞ ð3:4Þ

Average Linkage : dðC;DÞ¼ 1
jDjjCj

X
x2C;y2D

dðx;yÞ ð3:5Þ

Average ToCentroid Linkage : dðC;DÞ¼ 1
jDjþ jCj

X
x2C

dðx;vDÞþ
X
y2D

dðy;vCÞ
" #

ð3:6Þ

The other objective function minimizes the number of clusters
parameter.

F ¼minðnumber of clustersÞ ð3:7Þ

After running the algorithm, the aim is obtaining the first Pareto
optimal front having the best partitioning with the least number of
clusters as an optimal solution set.

3.2. Chromosome encoding

The coding of the individual population is a chromosome of
length N. Each gene in the chromosome takes a value from the
set of k clusters {1, 2, . . . , k} and represents an object. The value
indicates the cluster to which the corresponding object belongs.
Each chromosome exhibits a solution set in the population. If the
chromosome has k clusters, then each gene an (n = 1 to N) takes a
random value from the interval [1, k]. The process is repeated P
times to produce P chromosomes which form the initial solution
set on which the various genetic operators will be applied, as de-
scribed in the sequel, leading to the final solution set. The value
of P is arbitrarily determined.

3.3. Fitness evaluation and selection

The fitness value for each chromosome is computed based on
the average TWCV of the clusters in the solution represented by
the chromosome and on the separateness of these clusters. In this
paper, the Niched Pareto tournament selection scheme is used for
the selection process in the multi-objective genetic clustering sys-
tem. The scheme is described as follows: Two candidates for selec-
tion are picked randomly from the population, and then each of the
candidates is compared against each individual in the comparison
set, which is the set from the previous result set, then the set with
the new candidate is compared with the previously selected set. If
the candidate is dominated by the comparison set, it will be
deleted from the population. In this system, if both candidates
are non-dominated, they will be kept in the population. This is dif-
ferent from the original Niched Pareto Tournament Selection
where if neither of the two is dominated by the comparison set
then they will use sharing to choose a winner [22], which is not
necessarily in this system.

3.4. Crossover and mutation

Some initial experiments demonstrated that one-point cross-
over produces better fitness values than multi-point attempts. So,
in this study one-point crossover operator is applied on two ran-
domly chosen chromosomes. The crossover operation is carried
out on the population with crossover rate pc. After the crossover,
assigned cluster numbers for each gene are renumbered beginning
from a1 to aN. For example, give two chromosomes having 3 and 5
clusters, respectively:

Number of clusters ¼ 3 : 1 2 3 3 3;

Number of clusters ¼ 5 : 1 4 3 2 5;

and assume they need to have a crossover at the third location, we
will get 1 2 3 2 5 and 1 4 3 3 3, which are then renumbered to get
the new number of clusters parameters:

Number of clusters ¼ 4 : 1 2 3 2 4 for 1 2 3 2 5ð Þ;
Number of clusters ¼ 3 : 1 2 3 3 3 for 1 4 3 3 3ð Þ

The mutation operator on the current population is employed
after the crossover. During the mutation, each gene value an is
replaced by a0n, with respect to the probability distribution: for
n = 1, N simultaneously. a0n is a cluster number randomly selected
from the set {1, . . . , k} with the probability distribution {p1, p2,
. . . , pk} defined using the following formula:

Pi ¼
1:5�dmaxð Xn

�!Þ � dð Xn
�!

; Ck
�!ÞPK

k¼1ð1:5
�dmaxð Xn

�!Þ � dð Xn
�!

; Ck
�!ÞÞ ð3:8Þ

where i = (1, 2, . . . , k) and d(Xn, Ck) denotes the Euclidean distance
between object Xn and the centroid Ck of the kth cluster, dmax(Xn) =
maxk{d(Xn, Ck)}, and the constant 1.5 has been arbitrarily chosen to
guarantee that the computed probability value is greater than zero
for every gene i, which is necessary for the convergence to be
achieved; having the mentioned constant greater than 1 will guar-
antee this. Here, pi represents the probability interval of a mutating
gene assigned to cluster i (e.g., Roulette Wheel). Using this method,
the probability of changing gene value an to a cluster number k is
greater if Xn is closer to the centroid of the kth cluster Gk.

3.5. Implementation details

The clustering system described in this paper consists of two
components: the Multi-Objective Genetic K-means Algorithm
(MOKGA) cluster and the cluster validity component. The imple-
mentation details are described next.

MOKGA uses a list of parameters to drive the evaluation proce-
dure as in other genetic types of algorithms: including population
size (the number of chromosomes), t_dom (the number of compar-
ison set) representing the assumed non-dominated set, crossover,
mutation probability, and the number of iterations for the execu-
tion of the algorithm to obtain the result. Subgoals can be defined
as fitness functions, and instead of scalarizing them to find the goal
as the overall fitness function with the user defined weight values,
it is expected that the system can find the set of best solutions, i.e.,
the Pareto-optimal front. By using the specified formulas, at each
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generation, each chromosome in the population is evaluated and
assigned a value for each fitness function.

Initially, the current generation is assigned to zero. Each chromo-
some takes the number of clusters parameter within the range 1 to
the maximum number of clusters given by the user. A population
with the specified number of chromosomes is created randomly
by using the method described by Rousseeuw [55], where data
points are randomly assigned to each cluster at the beginning
and the rest of the points are randomly assigned to clusters. By
using this method, we can avoid the generation of illegal strings,
which means some clusters do not have any pattern in the string.

Using the current population, the next population is generated
and the generation number is incremented by 1. During the next
generation, the current population performs the Pareto domination
tournament to get rid of the worst solutions from the population.
Crossover, mutation, and the k-means operator [38] are then ap-
plied to reorganize each object’s assigned cluster number. Finally,
we will have twice the number of individuals after the Pareto dom-
ination tournament. The ranking mechanism used by Zitzler [72] is
applied to satisfy the elitism and diversity preservation. This halves
the number of individuals in the population to be moved to the
next iteration.

The first step in the construction of the next generation is the
selection using Pareto domination tournament. In this step, two
candidate items picked among (population size-tdom) individuals
participate in the Pareto domination tournament against the tdom

individuals for the survival of each chromosome in the popula-
tion. In the selection part, tdom individuals are randomly picked
from the population. Two chromosome candidates are randomly
selected from the current population except those in the compar-
ison set (population size-tdom), and each of the candidates is com-
pared against each individual in the comparison set tdom. If one
candidate has a larger total within-cluster variation fitness value
and a larger number of clusters value than all of the chromo-
somes in the comparison set, then it is dominated by the compar-
ison set and will be deleted from the population permanently.
Otherwise, it resides in the population. The corresponding pseudo
code is given below:

Function selection

Begin
shuffle(random_pop_index, number_of_rules) /

�Re-randomize random index array�/
candidate_1=random_pop_index[0]
candidate_2=random_pop_index[1]
candidate_1_dominated = false;
candidate_2_dominated = false;
For comparison_set_index = 3 to tdom + 3 do /

� Select tdom individuals randomly from current population
S�/

comparison_individual = random_pop_index
[comparison_set_index]

If S[comparison_individual] dominates S[candidate_1]
then candidate_1_dominated = true

If S[comparison_individual] dominates S[candidate_2]
then candidate_2_dominated = true
End For

If (candidate_1_dominated AND candidate_2_dominated)
delete_rule(candidate_1, candidate_2);

If (candidate_1_dominated AND not candidate_2_
dominated) delete_one_rule(candidate_1);
If (not candidate_1_dominated AND
candidate_2_dominated)
delete_one_rule(candidate_2);

End selection
After the Pareto domination tournament, the dominated
chromosome is deleted from the population. The next step is

the crossover process. One point crossover is used in the
employed multi-objective genetic clustering approach. An index
into the chromosome is selected and all data beyond that
point in the chromosome are swapped between the two parent
chromosomes. The resulting chromosomes are the children. The
pseudo code of the function that performs the crossover process
is given next:

Function crossover

Begin /� Randomly chose the two chromosomes�/
Chromosome_1 = rand()% biggest chromosome index
Chromosome_2 = rand()% biggest chromosome index
/�Randomly choose the cross point�/
cross_point = rand()% length of the chromosome
Swap (Chromosome_1, Chromosome_2, cross_point)

End crossover

Mutation is applied to the population in the next step by ran-
domly changing the values in the chromosome according to some
probability distribution, as discussed in Section 3.4. The pseudo
code of the mutation function is given next:

Function mutation
Input: population P (S1, S2, . . . , SJ), Mutation probability MP
Output: population P0ðS01; S

0
2; . . . ; S0JÞ

Begin
For j = 0 to J do /� for each solution SJ in population P�/
SD=0; /�summation of distribution�/

c1
!

. . . ck
! = CalCentroids(SJ) /� calculate the centre point

for each cluster�/
For n=1 to N do /�for each data point in SJ

�/
If rand() < MP then

d_max = 0.00;
For k = 1 to K /� for each cluster �/

dk = calEuclideanDistanceð Xn
�!

; ck
!Þ /� distance

from data to cluster centre�/
d_max = max(d_max, dk)

SD ¼ SDþ ð1:5� d maxð Xn
�!Þ � dð Xn

�!
; ck
!ÞÞ

End For
p1 = (1.5 � d_max-d1)/SD /� Mutation probability for

cluster 1�/
For k = 2 to K

pk = (1.5 � d_max � dk)/SD + pk�1; /� Mutation
probability for cluster 2� CLUSTER�/

End for
S0j:a

0
n = a cluster number, randomly chose according to

the distribution p1, p2, . . . pk

End if MP
End for n

End for j
End mutation

The K-means operator is applied last to reanalyze each chromo-
some gene’s assigned cluster value. It calculates the centroid for
each cluster and re-assigns each gene to the closest cluster. In
other words, applying K-means helps in quickly rectifying any un-
wanted outcome from the crossover operator; it is like a confirma-
tion step to guarantee each object belongs to its cluster. Hence, the
K-means operator is used to speed up the convergence process by
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replacing an by a0n, for n = 1 to N simultaneously, where a0n is the
closest to object Xn in Euclidean distance. The pseudo code for
the K-means operator is:

Function K-Means operator
Input: population P (S1, S2, . . . , SJ)
Output: population P0ðS01; S

0
2; . . . ; S0JÞ

Begin
For j = 1 to J do /� each solution in a population P�/

c1
!

. . . ck
! = CalCentroids(SJ) /� calculate the centre point for

each cluster�/
For n = 1 to N do /� each data point in a solution�/

dmin = MAX_NUMBER
For k = 1 to K do /� K is maximum cluster number�/

/� calculate the Euclidean distance from the data
point to each cluster centre�/

dk ¼ calEuclideanDistanceð Xn
�!

; ck
!Þ

If (dk < dmin) then /� a closer centroid is found�/
dmin = dk;
kmin = k;

End If
End For

S0j:a
0
n ¼ kmin /� assign the closet cluster number to the

data point�/
End For

End For
End K-means operator

After all the operators have been applied, twice the number of
individuals is produced. After having the Pareto dominated tourna-
ment, we cannot give an exact number equal to the initial popula-
tion size because at each generation randomly picked candidates
are selected for the survival test leading to the deletion of one or
both, in case dominated. To half the number of individuals, the
ranking mechanism proposed by Zitzler [72] is employed. Thus,
the individuals obtained after crossover, mutation, and the K-
means operator are ranked, the best individuals are picked to place
in the population for the next generation.

The approach picks the first l individuals by considering the elit-
ism and diversity among 2l individuals. Pareto fronts are ranked.
Basically, we find the Pareto-optimal front and remove individuals
of the Pareto-optimal front from the 2l set and place them in the
population to run in the next generation. In the remaining sets
we get individuals constituting the first Pareto-optimal front and
put them in the population and so on. Since we try to get the first
l individuals, the last Pareto-optimal front may have more individ-
uals required to complete the number of individuals to l. We han-
dle the diversity automatically. We rank them and reduce the
objective dimensions into one. We then sum the normalized values
of the objective functions for each individual. These are sorted in
increasing order and each individual’s total difference from its
individual pairs is calculated. Individuals are placed in the popula-
tion based on decreasing differences, and then we keep placing
from the top as many individuals as we need to complete the num-
ber of individuals in the population to l. The reason for doing this is
to take the crowding factor into account automatically so that indi-
viduals occurring closer to others are unlikely to be picked. This
method was also suggested as a solution for the elitism and diver-
sity for improvement in NSGA-II. For example, in order to get 20
chromosomes from the population, we select 10 chromosomes
from the Pareto front, delete them from the current population,
then get 8 chromosomes from the Pareto front in the current pop-
ulation, delete them from the population. Suppose we have 6 chro-
mosomes in the current population, we take 2 chromosomes that
have the largest distance to their neighbors using the ranking
method mentioned above. Finally, if the maximum number of
generations is reached, or the Pareto front remains stable for 50
generations, then the process is terminated; otherwise we proceed
to determine the next generation.
4. Experimental results

To evaluate the performance and efficiency of the proposed sys-
tem consisting of the MOKGA clustering approach and cluster
validity analysis, experiments were conducted using a personal
computer running Windows 7. The MOKGA clustering approach
was implemented using MS Visual C++.

Both widely used general datasets and microarray datasets have
been used to test the proposed framework. This demonstrates that
the framework described in this paper works not only for micro-
array (gene expression) data but also for general clustering as well.
For example, the two datasets Iris and Ruspini that are widely used
in testing clustering approaches described in the literature have
been used to test the general MOKGA approach [43,44].

Five gene expression datasets, Fig2data, cancer (NCI60), Leuke-
mia and two breast cancer datasets were used to test the perfor-
mance and accuracy of the system for gene expression data.
Among them, Fig2data data is used for clustering genes, while can-
cer (NCI60) and Leukemia data sets are used for group cell samples.
The description and testing results of the five datasets are dis-
cussed in the following sections.

The aforementioned different cluster validity indexes have been
used to validate the result. Minimal SD index indicates an optimal
cluster number, while maximal Dunn index shows the optimal
number of clusters as it maximizes intercluster distances and min-
imizes the intracluster distances. The DB index is a function of the
ratio of the sum of within-cluster scattering to between clusters
separation, a small value exhibits a good clustering. Silhouette va-
lue is in the interval [�1,1]; a value close to 1 means the sample
has been assigned to a very appropriate cluster, and 0 means the
sample lies equally far away from both clusters, while close to
�1 means the sample is misclassified.
4.1. The Ruspini dataset

The Ruspini dataset [56] is popular for illustrating clustering
techniques. It has 75 instances with 2 attributes and integer coor-
dinates: 0 < X < 120, 0 < Y < 160, which might be naturally grouped
into 4 sets.

In one study [56], four clusters were reported as the best clus-
tering solution for the Ruspini dataset using numerical methods.
In another independent study, Cole tested the Ruspini dataset
using general genetic algorithms [12]. The same number of clusters
was obtained using genetic algorithms by Calinski and Harabasz
criterion, Davies and Bouldin cluster validity methods. Values of
the major parameters used for the genetic algorithm in this study
are: number of iterations = 100, range of exponential mutation
rate: from 10.0 to 0.000001, population size = 200, and crossover
probability = 1.00.

The multi-objective genetic algorithm-based approach pro-
posed in this paper was run ten times with the following parame-
ters: population size = 100, t_dom (the number of comparison
set = 10), crossover = 0.8 and mutation = 0.01. Threshold = 0.1 has
been used to check if the population stops evolution for 50 gener-
ations and if the process needs to be stopped. The range of [1,10]
was picked for finding the optimal number of clusters.

Changes in the Pareto-optimal front by running the algorithm
for the Ruspini dataset are displayed in Fig. 4.1. It demonstrates
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Fig. 4.1. Pareto-fronts for Ruspini dataset.

Table 4.1
Ruspini dataset TWCV for k = 8.

Iteration TWCV

1 7718.25
50 6158.25
100 6157.50
150 6149.63
k-means 8185.5

114 P. Peng et al. / Knowledge-Based Systems 56 (2014) 108–122
how the system converges to an optimal Pareto-optimal front. Key
TWVC values are reported in Table 4.1 because the actual change in
the value of TWVC is not reflected in Fig. 4.1 where the values are
very close and all the five curves almost overlap due to the scale
used.
We run the six cluster validity indexes on the Ruspini dataset.
The test results are reported in Figs. 4.2 and 4.3 for five indexes
and for the C-index, respectively; we separated the C-index
because it works under a different scale. From the curves plotted
in the two figures, not only 4 is in our Pareto optimal front, also
this value is the best for all the cluster validity analysis indexes.
This finding is consistent with the results obtained before and re-
ported by other researchers [12,56].

4.2. The Iris dataset

The Iris dataset is a famous dataset widely used in pattern rec-
ognition and clustering. It is a 4-attributes dataset containing 150
instances; it has three clusters each has 50 instances. One cluster is
linearly separable from the other two and the latter two are not ex-
actly linearly separable from each other [10].

Chen and Liu [10] applied visual rendering to the Iris dataset.
Fig. 4.4 shows their clustering results for the Iris dataset. The VISTA
system that they used implements a linear and reliable mapping
model to visualize the k-dimensional dataset in a 2D star-coordi-
nate space. It allows users to validate and interactively refine the
cluster structure based on their visual experience as well as on
their domain knowledge. They found that one cluster had been
separated from the other two. The gap between clusters A and B
can be visually perceived but is not very clear. Fig. 4.4 explains
why two is the number of clusters in our cluster validity analysis
results. Cole also conducted tests on the Iris dataset using general
genetic algorithms [12]. The values of the main parameters he used
in the genetic algorithm are: number of iterations = 1000, range of
exponential mutation rate = from 10.0 to 0.000001, population
size = 50, crossover probability = 1.00. For the cluster validity, the
optimal number of clusters obtained are 3 for the Davies Bouldin
method and 2 for the Calinski and Harabase method.

The clustering approach described in this paper was run 10
times with the following parameters: population size = 100,
t_dom (number of comparison set = 10), crossover = 0.8, and muta-
tion = 0.01. Threshold = 0.0001 was used to check if the population
stops evolution after 50 generations or if the process needs to be
stopped. In addition, the range of [1,10] was picked for finding
the optimal number of clusters for the experiments, which is the
same as for the Ruspini dataset.

Average changes in the Pareto-optimal front by running the
proposed algorithm for the Iris dataset are displayed in Fig. 4.5
for different generations. It demonstrates how the system
converges to an optimal Pareto-optimal front. As the actual change
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Table 4.2
Iris dataset TWCV for k = 6 and k = 9.

Iteration TWCV(6) TWCV(9)

1 65.9482 57.2637
10 41.708 29.2061
25 41.708 28.3555
50 41.708 28.1758
100 39.043 28.1758
k-means 45.5185 34.1203
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in the value of TWVC is not reflected in the curves plotted in Fig. 4.5
(the curves almost overlap), some key TWVC values are reported in
Table 4.2.

The obtained results were tested and analyzed for the Iris data-
set using the six indexes mentioned before. The average results of
10 runs are reported in Figs. 4.6 and 4.7. Finally, the results ob-
tained are compared with the corresponding results reported by
the other researchers [10,12]. According to [10], the optimal num-
ber of clusters found for the Iris data is 3, which ranks second for all
the indexes except S-Dbw and C index (see Figs. 4.6 and 4.7). This
finding is consistent with the result of the DB cluster validity index
published by Cole [12]. The reason that these clusters are not the
best is that the good values of the six indices indicate ‘‘good’’ clus-
tering, which includes properly combined compactness and sepa-
ration. Clusters are more compact but less separate from each
other for the number of clusters taken as 3, while clusters with
number of clusters taken as 2 are better separated. The visual clus-
tering results given by Chen and Liu [10] show this difference
clearly. The C index is likely to be data dependent and the behavior
of the index may change when different data structures are used as
reported in [18].
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Fig. 4.6. Iris dataset cluster validity results using
4.3. The Fig2data dataset

The Fig2data dataset is the time course of serum stimulation of
primary human fibroblasts. It contains the expression data for 517
genes of which the expression changed substantially in response to
serum. Each gene has 19 expressions ranging from 15 min to 24 h
[10,27].

Lu et al. [38] applied the Fast Genetic K-means Algorithm to
Fig2data. They selected mutation probability = 0.01, population
size = 50, and generation = 100 as their parameter setting and ob-
tained a fast clustering process.

The multi-objective genetic algorithm-based approach MOKGA
described in this paper has been applied to the Fig2data dataset.
Experiments were conducted with the following parameters: pop-
ulation size = 150, t_dom (number of comparison set = 10) and
crossover = 0.8, mutation = 0.005, gene mutation rate = 0.005, and
threshold = 0.0001 forces the stopping condition in case reached
before the evolution reaches the ultimate stopping condition of
6 7 8 9 10

Dunn, DB, SD, S_Dbw and Silhouette indices.



0

0.01

0.02

0.03

0.04

0.05

0.06

2 4 6 8 10 12 14 16 18 20

C

Fig. 4.10. Fig2data dataset cluster validity results using C index.

Table 4.3
Fig2data dataset TWCV for k = 16.

Iteration TWCV

1 17406.3
50 3371.91
100 3303.5
200 3303.21
300 3214.34
400 3211.25
500 3202.04
k-means 3803.62
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50 generations. The range of [1,25] was picked to find the optimal
number of clusters.

The corresponding experimental results are demonstrated in
Fig. 4.8 and Table 4.3. They also show how the system quickly
converges to an optimal Pareto front; the generations almost over-
lap after the 50th generation. As shown in Table 4.3, the variation
in the TWCV is very small. Figs. 4.9 and 4.10 report validity results
and reflect comparisons with the studies described in the literature
[27,38]. The study of Iyer et al. [27] shows the optimal number of
clusters for Fig2data as 10. Consistently, the results in this paper
indicate that 10 ranks among the best results for the C index,
and 10 clusters is among the best for other indices. According to
Halkidi et al. [18], SD, S_Dbw, DB, Silhouette, and Dunn indices
cannot properly handle arbitrarily shaped clusters, so they do not
always give satisfactory results.
4.4. The NCI60 cancer dataset

The NCI60 dataset is a gene expression database for the molec-
ular pharmacology of cancer. It contains 728 genes and 60 cell lines
derived from cancers of colorectal, renal, ovarian, breast, prostate,
lung, and central nervous system origin, leukemia and melanoma.
Growth inhibition is assessed from changes in total cellular protein
after 48 h of drug treatment using a sulphorhodamine B assay. The
patterns of drug activity across the cell lines provide information
on mechanisms of drug action, resistance, and modulation [58].
In the clustering test reported in this paper, there is a need to test
cell–cell correlations on the basis of drug activity profiles, which
are the gene expression data available.

The study by Scherf et al. [58] uses an average-linkage algo-
rithm and a metric based on the growth inhibitory activities of
the 1400 compounds for the cancer dataset. The authors observed
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15 distinct branches at an average inter-cluster correlation coeffi-
cient of at least 0.3. In this method, the correlation parameter
was used to control the clustering results. It might be hard to de-
cide if it is an unsupervised clustering task.

The multi-objective genetic algorithm-based approach MOKGA
described in this paper has been run for the NCI60 cancer dataset
with the following parameters: population size = 100, t_dom (num-
ber of comparison set = 10) and crossover = 0.8, mutation = 0.005,
gene mutation rate = 0.005, and threshold = 0.0001 which is used
to check if the population stops evolution for 50 generations and
if the process needs to be stopped. The range of [1,20] was picked
to find the optimal number of clusters.

Changes in the Pareto-optimal front after running the algorithm
are displayed in Fig. 4.11 and Table 4.4 for different generations.
The reported changes demonstrate how the system converges to
an optimal Pareto-optimal front.

Figs. 4.12 and 4.13 show the average results obtained. For the
cancer (NCI60) dataset, we have 15 in the Pareto optimal front; this
value also ranks the sixth for DB index, fifth for SD index and fifth
for the C index. These are consistent with the results reported in
[58]. Some indices values are not good because index values are
highly dependent on the shape of the clusters. This justifies the
need to apply multiple indices and majority voting in order to
eliminate the bias of distorted indices.
4.5. The Leukemia dataset

The third microarray dataset used in this paper is the Leukemia
dataset, which has 38 acute leukemia samples and 50 genes. The
12 14 16 18 20

ng Dunn, DB, SD, S_Dbw and Silhouette indices.
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Fig. 4.11. Pareto-fronts for Cancer dataset.

Table 4.4
Cancer dataset TWCV for k = 16.

Iteration TWCV

1 78435.2
100 53785
200 53210.5
400 52571.8
600 52571.8
800 52398.1
1000 52398.1
1100 52385.3
k-means 53673.2
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purposes of the testing include clustering cell samples into groups
and finding subclasses in the dataset.

The study by Golub et al. [17] uses Self-Organizing Maps (SOMs)
to group the Leukemia dataset. In this approach, the user specifies
the number of clusters to be identified. SOM finds an optimal set of
‘‘centroids’’ around which the data points appear to aggregate. It
then partitions the data set with each centroid defining a cluster
consisting of the data points nearest to it. Golub [17] got two clus-
ters acute myeloid leukemia (AML) and acute lymphoblastic leuke-
mia (ALL), as well as the distinction between B-cell and T-cell ALL,
i.e., that the optimal number of clusters is 2 or 3 (with subclasses).

The multi-objective genetic algorithm-based approach de-
scribed in this paper was run for the Leukemia dataset with the fol-
lowing parameters: population size = 100, t_dom (number of
comparison set = 10) and crossover = 0.8, mutation = 0.005, gene
mutation rate = 0.005, and threshold = 0.01 for the possibility of
stopping the evolution before reaching 50 generations. The range
of [1,10] was picked for finding the optimal number of clusters.

Changes in the Pareto-optimal front are displayed in Fig. 4.14
and Table 4.5 for different generations. The results demonstrate
how the system converges to an optimal Pareto-optimal front.

The Leukemia dataset clustering results shown in Figs. 4.15 and
4.16 indicate the same conclusions reported by Golub et al. [17].
They also indicate that 2 (AML and ALL) is the best number of clus-
ters after the validity analysis with Dunn index, DB index, SD index,
and Silhouette and 3 (AML, B-cell ALL and T-cell ALL) is the second
best. C index shows that 2 is the best number of clusters and 3 is
the second best.

It can be seen from Fig. 4.15 that S_Dbw is an exception. The SD
index gives good values but S_Dbw does not. This indicates that the
inter-cluster density for number of clusters taken as 2 or 3 is not
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Fig. 4.14. Pareto-fronts for Leukemia dataset.

Table 4.5
Leukemia dataset TWCV for k = 9.

Iteration TWCV

1 2.25E+09
25 1.94E+09
50 1.88E+09
100 1.84E+09
200 1.81E+09
k-means 1.88E+09
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high for the 38 samples. Experimental results in this paper also
indicate that the S_Dbw index is not suitable to test small datasets
with fewer than 40 instances.
4.6. Breast cancer datasets

In this section, we apply the MOKGA algorithm to cluster breast
cancer microarray data, since breast cancer is known to be a heter-
ogeneous class of cancer, i.e., classification of genes/tumors is gen-
erally unstable. We have chosen two microarray datasets for this
purpose: GSE12093 [71] and GSE9195 [37], available at http://
www.ncbi.nlm.nih.gov/geo/.
4.6.1. The GSE12093 dataset
The GSE12093 dataset has 76-gene signatures defining high-

risk patients that benefit from adjuvant tamoxifen therapy, from
136 breast cancer samples that were treated with tamoxifen. It
contains 22,284 genes with 136 attributes/features. We use filter-
ing standard of more than 200% coefficient of variation to reduce
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the data size and the distribution of this dataset is not sensitive
to standard deviation or other filtering criteria.

The multi-objective genetic algorithm-based approach pro-
posed in this paper was run ten times with the following parame-
ters: population size = 150, t_dom (the number of comparison
set = 10) and crossover = 0.8 and mutation = 0.01. Threshold = 0.1
has been used to check if the population stops evolution for 50
generations and if the process needs to be stopped. The range of
[1,6] was picked for finding the optimal number of clusters.

Changes in the Pareto-optimal front by running the algorithm
for the GSE12093 dataset are displayed in Fig. 4.17 for different
generations to demonstrate the rate of convergence of the algo-
rithm to an optimal Pareto-optimal front. The actual change in
the value of TWVC is not reflected in Fig. 4.17 where the values
are very close and all the five curves almost overlap due to the
scale used.

We performed cluster validity analyses on the filtered GS12093
datasets to compare the results of our experiments. We used three
indices from internal measures (connectivity, Dunn and Silhouette
index) and four from stability measures (Average proportion of
non-overlap (APN), Average distance (AD), Average distance be-
tween means (ADM) and Figure of merit (FOM)). The test results
are reported in Figs. 4.18 and 4.19 for internal measures indices
and stability measures indices, respectively. All the three internal
measures indices and the two stability measures indices show
the same results, with similar trend.
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Fig. 4.19. GSE12093 dataset cluster validity results using stability measures.

Fig. 4.18. GSE12093 dataset cluster validity results using Connectivity, Dunn and
Silhouette indices.

Fig. 4.17. Pareto-fronts for GSE12093 dataset.

Fig. 4.20. Pareto-fronts for GSE9195 dataset.

Fig. 4.21. GSE9195 dataset cluster validity results using APN, Dunn, ADM, FOM and
Silhouette indices.

Fig. 4.22. GSE9195 dataset cluster validity results using connectivity and AD.
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4.6.2. The GSE9195 dataset
The GSE9195 dataset contains molecular profiling in estrogen

receptor-positive (ER+) breast cancer treated with tamoxifen. Gene
expression profiling is used to develop an outcome-based predictor
using a training set of 255 ER + BC samples. The data set contains
54,675 samples with 77 attributes/features. We filtered out data
having standard deviation value over 1.6 in order to reduce the
data size.

The multi-objective genetic algorithm-based approach pro-
posed in this paper was run ten times with the following parame-
ters: population size = 150, t_dom (the number of comparison
set = 10) and crossover = 0.8 and mutation = 0.01. Threshold = 0.1
has been used to check if the population stops evolution for 50
generations and if the process needs to be stopped. The same range
for the number of clusters is used.
Changes in the Pareto-optimal front by running the algorithm
for the GSE9195 datasets are displayed in Fig. 4.20 for different
generations. The actual change in the value of TWVC is not reflected
in Fig. 4.20 where the values are very close and all the five curves
almost overlap due to the scale used.

We run for the GSE9195 dataset the same validity process de-
scribed in the previous section. However, due to the large variances
of the index values, we re-grouped the indices and show them in
two figures. Fig. 4.21 shows the indices with values between 0
and 6, while Fig. 4.22 shows the connectivity and AD indices with
larger value.
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4.7. General evaluation and comparisons with other methods

As discussed in the previous section, experiments were con-
ducted to examine convergence and performance of the proposed
MOKGA clustering system using seven datasets. In this section, a
general evaluation is given, and the MOKGA system is compared
with other methods on the basis of the results reported by the
other researchers who used the same datasets.

The Ruspini dataset clustering result shows that four is the opti-
mal number of clusters reported by all the cluster validity analysis
indexes. This is consistent with earlier results, e.g., [56]. The Iris
dataset gives similar result with the solutions of having the num-
ber of clusters two as the best solution and 3 clusters as the second
best solution; both values are acceptable and have been reported
by other researchers separately. According to the work described
in [27], Fig2data has 10 clusters. The proposed approach gave the
same result using the C index clustering validity method. The uti-
lized cancer data has 15 clusters according to the result reported in
[58]. MOKGA produces the same result using the DB index. The
optimal number of clusters of the Leukemia dataset as agreed upon
in the literature is 2 or 3 (with subclasses). Fortunately, MOKGA re-
ported the same results using Dunn, DB, SD, and Silhouette indices.

All the results we have reported for the seven datasets are
consistent with the counterparts reported in the literature. These
results highly emphasize MOKGA as a powerful clustering ap-
proach that can be successfully applied to various application
domains.

4.7.1. MOKGA vs. Fast Genetic K-mean Algorithm (FGKA)
Since MOKGA has been developed on the basis of Fast Genetic

K-mean Algorithm (FGKA) [38] and Niched Pareto Genetic Algo-
rithm (NPGA), MOKGA and FGKA share many features: both are
evolutionary algorithms; they have the same mutation and K-
mean operators; and they both use TWCV for the fitness value
evaluation.

According to the results, MOKGA and FGKA got similar TWCV
values, MOKGA obviously needs more generations to reach the sta-
ble state, this might be because MOKGA is using separateness of
clustering as another measure for checking the quality of the re-
sults and it is optimizing chromosomes with different number of
clusters altogether.

MOKGA has some advantages over FGKA and GKA: it can find
Pareto optimal front, which allows us to get an overview of the en-
tire clustering possibilities and to get the optimal clustering results
in one run; it does not need the number of clusters as a parameter,
which is very important because clustering is an unsupervised
task, and we usually do not have any idea about the number of
clusters before the clustering process is completed. These two is-
sues are real concerns for FGKA, GKA and most of the other cluster-
ing algorithms.

4.7.2. MOKGA vs. K-means algorithm
Both MOKGA and the K-means algorithm minimize the overall

within-cluster dispersion by iterative reallocation of cluster mem-
bers. MOKGA has some advantages over K-means: it can find Par-
eto optimal front; it does not need the number of clusters as a
parameter; MOKGA can find global optimal solutions by applying
mutation and crossover operators on surviving intermediate solu-
tions. MOKGA combines both advantages of the genetic algorithm
and advantages of K-means: by using GA operators it can get global
optimal solutions, by using k-means operators MOKGA can get
solutions faster.

4.7.3. MOKGA vs. Neighborhood analysis
The study described in [17] uses SOM to group instances in the

Leukemia dataset. Their method reported 2 classes, and for each of
them, they got 2 subclasses. Exactly the same results are obtained
in the study described in this paper except for the S_Dbw index.
Experimental results reported in this paper indicate that the
S_Dbw index is not suitable to test small datasets, like when the
number of instances is less than 40. In the experiment conducted
for the study described in [17], they used the SOM method with
user defined number of clusters, whereas the method proposed
in this paper does not need such value to be predefined.
4.7.4. MOKGA vs. Average-linkage algorithm
The study described in [58] uses an average-linkage algorithm

and a metric based on the cancer dataset. A correlation parameter
was applied to control the clustering results. For the case of an
unsupervised clustering task, this parameter might be difficult to
decide on even by domain experts. The number of clusters 15
was obtained in this paper. It ranks the first for overall perfor-
mance in the DB index. This is consistent with the result reported
in [58].
4.7.5. MOKGA vs. Visual rendering
Keke Chen applied visual rendering clustering algorithm on the

Iris dataset. The system implements a linear mapping model to
visualize k-dimensional data sets in a 2D star-coordinate space;
then it provides a set of interactive rendering operations to enable
users to validate and interactively refine the cluster structure
based on their visual experience as well as their domain knowl-
edge. Using this method, Chen successfully divided the data set
into three clusters. But, this system needs manual parameter
adjustment to get a better separate map and manual boundary
set. These are inefficient and may cause some errors. Without
needing such manual process, MOKGA successfully grouped the
data set into three clusters. Results clearly show that separating
them into two clusters is also reasonable. This can be verified from
the map delivered by the visual rendering method. In comparison
to the visual rendering method, MOKGA has the following advan-
tages: it is more efficient in the sense that no user’s input is re-
quired during the clustering process, and it also can give users a
more clear cluster validity result so that users can get an overview
about the dataset. But, the visual rendering method has the advan-
tage that users can get a visual clustering result and it may work
well in dealing with clusters of irregular shapes. We have a plan
to extend MOKGA with a visual interface which will be capable
of displaying the alternative clustering solutions and how they
evolve during the genetic algorithm process.
4.7.6. MOKGA vs. Genetic Clustering Algorithm (GCA)
Rowena Marie Cole [56] used a genetic algorithm (GCA) for

clustering the Ruspini dataset. We got the same clustering result
they reported. Rowena’s clustering system is similar to the system
proposed in this paper, they both have evolutionary based cluster-
ing algorithm and clustering validity methods; but GCA cannot find
Pareto optimal front in one run; they find one solution per run
which is time and effort consuming. Further, the process is rela-
tively complex. Even if various solutions are reported by a number
of runs, there is no guarantee that the individual solutions will be
as compact as the counterparts produced along the pareto-optimal
front reported by MOKGA.
5. Discussions

This paper investigates the clustering approaches in general and
highlights their applicability for clustering datasets from various
application domains, including gene expression datasets [17,36].
The covered approaches include hierarchical clustering [21], part-
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itional clustering [33], graph-based [4] and model-based [3,70]
approaches.

A multi-objective genetic algorithm called MOKGA is described
in this paper to handle the data clustering problems. It is developed
on the basis of the Niched Pareto optimal and fast K-means genetic
algorithm. By using MOKGA, the main target is finding the Pareto-
optimal front sought to help the user to have accessibility to many
alternative solutions at once. Then, cluster validity index values are
evaluated for each Pareto-optimal front value, which is considered
the optimal number of clusters value. The applicability and effec-
tiveness of the developed clustering approach are demonstrated
by conducting experiments using the seven datasets from various
domains, namely figure 2data, cancer (NCI60) and Leukemia, two
breast cancer datasets, Iris and Ruspini.

In MOKGA, both crossover and mutation operators are used for
the evolutionary process in addition to the K-means operator
which is applied to make the evolutionary process faster. For the
selection, Niched Pareto tournament selection method is used.
Additionally, a multiple Pareto-optimal front layer ranking method
is proposed to maintain relative consistence population size in the
genetic process. In the experiments, it is also verified that this
method can help in leading to the global optimal solution set. In
the MOKGA process, the distance (Euclidean distance) between
the current generation’s Pareto optimal front and the previous gen-
eration is calculated and compared with the threshold, which can
be used to decide when to terminate the genetic process.

MOKGA overcomes the difficulty of determining the weight of
each objective function by taking part in the fitness when deal-
ing with this multiple objectives problem. Otherwise, the user
would have been expected to do many trials with different
weighting of objectives as in traditional genetic algorithms. This
method also gives the user an overview of different number of
clusters, which may help them in finding subclasses and optimal
number of clusters in a single run, whereas traditional methods
like SOM, K-means, hieratical clustering algorithms and GCA can-
not find optimal number of clusters or need it as a predefined
parameter.

MOKGA is less susceptible to the shape or continuity of the Par-
eto front. It can easily deal with discontinuous or concave Pareto
fronts. These two issues are real concerns for mathematical pro-
gramming techniques, like model-based approaches such as Bayes-
ain method and mixed model-based clustering algorithms.
6. Conclusions

There are some possible areas of improvement for MOKGA. In
this paper, cluster validity techniques, including Silhoutte, C index,
Dunn’s index, DB index, SD index and S-Dbw index, were used to
evaluate the solutions in the Pareto optimal front and to get the
optimal number of clusters. The overall performance is good, but
it can be seen that S_Dbw index is more suitable for evaluating
large datasets than small ones. Hence, choosing suitable index to
get the optimal number of clusters will be an issue in the clustering
process, especially when there are arbitrarily shaped clusters.
Other future research directions include the application of MOKGA
to other microarray clustering problems, such as biclustering prob-
lems [13], or using other criteria to test cluster validity. Further,
the current version of MOKGA as presented in this paper does sup-
port crisp clustering and it is not capable of identifying outliers.
Realizing these as vital areas of research for clustering algorithms,
we plan to turn MOKGA into a comprehensive solution that can
move forward from the alternative solutions into three main direc-
tions. First, we want to benefit from the alternative solutions to
produce a fuzzy clustering solution. Second, we want to be able
to identify outliers by employing information from the various
alternative solutions along the Pareto-optimal front. Finally, we
will also investigate the possibility of producing a unique more
compact solution by considering the clusters reported from various
solutions along the Pareto front.
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