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Next-generation sequencing (NGS) refers to technologies that

decipher nucleic acid information at the single-molecule

level. This high resolution contrasts with conventional

Sanger sequencing, which provides average information on

a population of molecules. NGS is revolutionising knowledge

of human genome diversity at both the germline level

(population) and the somatic level (tumours). Cooperative

groups such as the International Cancer Genome Consortium

and The Cancer Genome Atlas (TCGA) Research Network

provide platforms for effective worldwide collaboration [1].

The genome-wide analysis of tumours (either whole-genome

sequencing [WGS] or whole-exome sequencing [WES]) has

taken the lead, providing comprehensive genome land-

scapes, but NGS also allows more targeted analysis of

selected genes with high resolution and sensitivity. A major

question is whether genome-wide or targeted approaches

will be more appropriate to apply in the clinical setting.

Efforts on urologic cancers were preceded by those on

colorectal, breast, and pancreatic cancer using Sanger

sequencing. Since 2010, WES and WGS of kidney cancer

(>500), bladder cancer (approximately 250), and prostate

cancer (PCa; approximately 300) have become available.

Several common themes have emerged: (1) Tumour site-

specific and shared genetic pathways have been identified

(Table 1), (2) we are confronted with new tumour

taxonomies, and (3) new opportunities for improved

management have arisen.

1. Renal cell carcinoma

Until the NGS era, von Hippel-Lindau tumour suppressor, an

E3 ubiquitin protein ligase (VHL), was the major gene

known to be involved in clear cell renal cell carcinoma
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(ccRCC). Studies from the Wellcome Trust have shown a

high frequency of inactivation of polybromo 1 (PBRM1; a

component of the SWI/SNF chromatin remodelling com-

plex) in 40% of tumours and recurrent mutations in genes

involved in histone methylation: SET domain containing 2

(SETD2), lysine (K)-specific demethylase 5C (KDM5C), and

lysine (K)-specific demethylase 6A (KDM6A) [2,3]. The

BRCA1 associated protein-1 (ubiquitin carboxy-terminal

hydrolase) (BAP1) deubiquitinase has been found to be

inactivated in 15% of tumours [4]. Intriguingly, VHL, PBRM1,

and BAP1 are on chromosome 3p, the most common arm-

level loss in ccRCC. PBRM1 and BAP1 mutations are generally

exclusive, and several retrospective studies suggest that

BAP1 loss is a promising marker of poor prognosis [5,6]. The

TCGA study confirmed these findings, identified SETD2-

associated DNA methylation subsets, and provided evi-

dence of multiple RNA-based tumour subtypes charac-

terised by mutations in chromatin remodellers/PBRM1,

CDKNA and phosphatase and tensin homolog (PTEN), and

mechanistic target of rapamycin (serine/threonine kinase)

(MTOR) and BAP1 [7]. In addition, signatures have been

identified that are independently associated with outcome,

including those revealing metabolic remodelling of tumours

and having potential as therapeutic targets [7,8].

Ongoing studies of ccRCC from France and China and the

TCGA project on papillary tumours will support a more

detailed understanding of renal cell carcinoma (RCC)

genomic diversity.

2. Bladder cancer

A thorough knowledge of the genomic landscape of

urothelial bladder cancer (UBC) is still lacking. More than
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Table 1 – Summary of the main pathways/genes altered in urologic tumours, identified using next-generation sequencing

Renal cell carcinoma
(>500)

Urothelial bladder cancer
(approximately 250)

Prostate cancer
(approximately 300)

P53 TP53 TP53, MDM2 TP53

Histone modifications/

chromatin remodelling

PBRM1, SETD2, AID1A,

KDM5C, KDM6A

ARID1A, KDM6A, CREBBP, EP300, MLL1-3 MLL2

PI3K/mTOR MTOR, PIK3CA PIC3CA, PTEN, TSC1 PTEN

Transcription VHL/HIF1a RXRA, ER AR, MED12, SPOP

Cell cycle CDKN2A CDKN2A, CDKN1A, cyclin E, E2F3, MYC

Hypoxia VHL/HIF1A

Receptor tyrosine kinases FGFR3, ERBB1, ERBB2, ERBB3

Cohesin STAG2

DNA repair ATM, ERCC2, FANCA

Oxidative stress NFE2L2, TXNIP

Genomic rearrangements SFPQ-TFE3 FGFR3-TACC3, ERBB2-associated TMPRSS-ERG and related

Other genetic features APOBEC signature hypermutation Punctuated evolution

C-class tumours, with few SNVs

SNV = single-nucleotide variant.
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50% of UBCs are low-grade, non–muscle-invasive bladder

cancers (NMIBCs), yet only few of their genomes (approxi-

mately 10) have been sequenced. A Chinese project has

focused mainly on high-grade NMIBC and muscle-invasive

bladder cancers (MIBCs), whereas the TCGA has exclusively

analysed MIBC [9–11]. Therefore, we still await a detailed

comparison of NMIBC and MIBC.

WES has revealed mutations in chromatin modifiers/

remodellers, including AT rich interactive domain 1A (SWI-

like) (ARID1A), KDM6A, CREB binding protein (CREBBP), E1A

binding protein p300 (EP300), MLL1–3, and nuclear

receptor corepressor (NCOR) [9–12]. Recent studies have

highlighted alterations in stromal antigen 2 (STAG2) and

other genes involved in chromosome segregation acting as

tumour suppressors [10–12]. The mechanisms through

which these genes participate in UBC are unknown; STAG2

inactivation is preferentially associated with low-grade

NMIBC. Nucleotide excision repair (excision repair cross-

complementation group 2 [ERCC2], associated with a

distinct mutational pattern) and homologous recombina-

tion (ataxia telangiectasia mutated [ATM], Fanconi anae-

mia, among others) pathways also are frequently mutated

[10–12]. The TCGA has identified mutations in nuclear

factor, erythroid 2-like 2 (NFE2L2) and thioredoxin inter-

acting protein (TXNIP), involved in the response to

oxidative stress, in 15% of tumours. An apolipoprotein B

mRNA editing enzyme, catalytic polypeptide-like 3B

(APOBEC3B)–associated signature accounts for >50% of

single nucleotide variants (SNVs). MIBC subgroups have

been defined based on copy-number changes as well as

RNA expression [11]. These studies have suggested

putative therapeutic targets including receptor tyrosine

kinases (fibroblast growth factor receptor 3 and ERBB1,

ERBB2, and ERBB3, both through mutations and gene

rearrangements), nuclear receptors, heat shock proteins,

and proteins involved in glycolysis and cell cycle.

Sequencing of tumours from exceptional-responder

patients has uncovered the predictive potential of tuberous

sclerosis 1 (TSC1) mutations for response to everolimus

[13].
The completion of the TCGA project and the expansion of

the Chinese initiative will provide a more comprehensive

map of aggressive tumours. The UROMOL Consortium

plans to complete RNA-sequencing analysis of 1000

NMIBCs. New projects are required to determine the

genomic landscape of specific tumour subtypes, such as

micropapillary, plasmacytoid, and squamous carcinomas,

and of tumours from selected patient populations (eg,

nonsmokers, women).

3. Prostate cancer

PCa was the last of the common tumour types to have its

genome sequenced [14]. Initial studies focused on a broad-

based characterisation of PCa. The identification of

complex multichromosomal genomic rearrangement

loops [14] and of recurrent speckle-type POZ protein

(SPOP), forkhead box A1 (FOXA1), MLL2, and mediator

complex subunit 12 (MED12) mutations has shed new light

on PCa genetics [15,16]. The PCa genome appears to be

characterised by rare SNV and frequent copy-number

aberrations and genomic rearrangements, termed a C-class

tumour type. These rearrangements seem to arise in a

punctuated manner, driving clonal expansion and evolu-

tion [17].

Initial sequencing surveys did not provide deep insight

into either PCa treatment or prognosis. Subsequent work

has focused on specific disease subgroups. An elegant study

of pretreatment metastatic PCa revealed mutational profiles

comparable to earlier stage disease and the functional

impact of FOXA1 mutations in androgen responsiveness

[18]. Another focused report of 11 early-onset tumours

showed distinct, age-related, mutational profiles as well as

sustained dysregulation of androgen signalling [19].

The studies discussed have set the stage for statistically

well-powered, genomically comprehensive projects inter-

rogating well-defined clinical cohorts (Fig. 1). These large-

scale projects will answer fundamental questions about

PCa, including its mutation-driving profiles. By integrating

these diverse data sets, we will begin to assemble a
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Fig. 1 – Summary of ongoing projects in prostate cancer (PCa) using next-generation sequencing. A French project focuses on PCa within the French
Caribbean islands; a British project studies intratumoural and ethnic heterogeneity; a German project analyses early-onset PCa; and a Canadian project
focuses on intratumoural heterogeneity and risk stratification of intermediate-risk PCa. The US Cancer Genome Atlas Research Network project
provides a large-scale survey across all localised risk groups and will serve as a useful validation cohort. Finally, Stand Up to Cancer has created two
PCa ‘‘dream teams,’’ one focusing on metastatic disease and the other on linking genomic profiles to treatment selection.
CPRC = castration-resistant prostate cancer; ICGC = International Cancer Genome Consortium; PINs = prostatic intraepithelial neoplasia; TCGA = The
Cancer Genome Atlas.
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temporal and spatial understanding of the evolution of the

PCa genome.

4. NGS: Beyond description and towards patient

management

There is a substantial expectation that the power of NGS will

be revealed at additional levels, including understanding

tumour progression, aetiology, prevention, and early

detection.

Studies in ccRCC have shown the complex phylogeny and

branching evolution of tumour subpopulations and the

occurrence of convergent evolution (ie, distinct subclones of

the tumour independently acquiring different mutations,

converging in functional inactivation of a given gene) [20].

Most genetic alterations in a tumour, in fact, appear to be

subclonal, and intratumoural heterogeneity reveals patterns

that are parallel to those observed when comparing tumours

from different patients (M. Gerlinger, unpubl. data). Similar

diversity has emerged from single-cell exome sequencing in

RCC [21].

A case in point is the study of aristolochic acid–

associated (AAA) upper urinary tract urothelial tumours

(UTUCs) [22]. AAA-UTUCs were first reported in the context

of Balkan nephropathy and were found to display an A>T

mutational signature in tumour protein p53 (TP53). Two

recent WES and WGS studies have confirmed this signature

at the genome-wide level and have shown a high

mutational rate (150 mutations per megabase pair [Mbp]

compared with 111 mutations per Mbp in melanoma and

lower rates in tobacco-associated cancers) as well as a

preference for splice acceptor site mutations. Interestingly,

the culprit genes involved in AAA-UTUC overlap with non-

AAA urothelial cancers [22,23].
5. Conclusions

NGS technology is already providing new knowledge about

the molecular pathogenesis of cancer. The common players

involved in the major urologic tumours have likely been

identified, but the ‘‘long tail’’ of mutations remains poorly

characterised. It may well be that many new and targetable

mutations remain to be discovered and that differences

according to tumour subtype or population characteristics

(sex, age, environmental exposure) will emerge. The recent

approval of NGS technology for clinical application by the

US Food and Drug Administration sets the stage for a

transformation in precision medicine.
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