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Abstract

The leaky, heterogeneous vasculature of human tumors prevents the even distribution of systemic drugs within cancer
tissues. However, techniques for studying vascular delivery systems in vivo often require complex mammalian models and
time-consuming, surgical protocols. The developing chicken embryo is a well-established model for human cancer that is
easily accessible for tumor imaging. To assess this model for the in vivo analysis of tumor permeability, human tumors were
grown on the chorioallantoic membrane (CAM), a thin vascular membrane which overlays the growing chick embryo. The
real-time movement of small fluorescent dextrans through the tumor vasculature and surrounding tissues were used to
measure vascular leak within tumor xenografts. Dextran extravasation within tumor sites was selectively enhanced an
interleukin-2 (IL-2) peptide fragment or vascular endothelial growth factor (VEGF). VEGF treatment increased vascular leak in
the tumor core relative to surrounding normal tissue and increased doxorubicin uptake in human tumor xenografts. This
new system easily visualizes vascular permeability changes in vivo and suggests that vascular permeability may be
manipulated to improve chemotherapeutic targeting to tumors.
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Introduction

Tumors develop a chaotic vascular network characterized by

variable blood pressure and vascular permeability that inhibits

effective drug delivery [1]. Many areas within tumors contain

irregular blood vessels that are leaky and allow influx of circulating

blood components. Sporadic high cell density within the tumor

prevents normal tissue drainage [2]. This promotes the accumu-

lation of cellular and blood proteins in the interstitial space,

leading to high interstitial oncotic pressure, which inhibits the

extravasation of systemic drugs [3]. Ultimately the distribution of

systemically circulating drugs in tumors can be unpredictable and

irregular since it depends heavily on the passive extravasation of

the drug from the vasculature into target tissues [2,4,5,6].

By transiently altering tumor blood vessel physiology during

systemic anti-cancer treatment, tissue perfusion and drainage can

be enhanced, thereby relieving interstitial hypertension [7,8].

Prolonged treatment with anti-angiogenic drugs, such as Sunitinib

or DC101, normalizes blood flow through the remaining stabilized

vasculature. These treatments can improve tumor micro-hemo-

dynamics and effectively lower the interstitial pressure. Conse-

quently, the efficacy of concomitantly or subsequently adminis-

tered drugs is enhanced due to improved vascular delivery

[7,9,10]. Similarly, treatment of hepatic tumors with interferon-b
(IFN-b) induces tumor vessel maturation and tissue perfusion,

which improves delivery of additional therapeutics [11]. Altering

oncogenic signaling in tumors can also be used to change their

blood-flow dynamics [12]. Specifically, inhibition of the PI3K

pathway increases tumor perfusion and simultaneously enhances

doxorubicin delivery [13]. These findings indicate that the

strategic use of adjuvants to transiently modify tumor blood flow

and hemodynamics can facilitate drug delivery to cancer sites.

Normalizing blood flow promotes drug delivery by reducing the

interstitial pressure that counteracts diffusion. However, normal-

izing agents can also reduce vascular permeability. Vascular

permeability greatly influences the extravasation of drugs associ-

ated with carriers, including liposomes, micelles or other

nanoparticles [14,15,16]. Recent advances to manipulate vascular

permeability exemplify how adjuvant therapy might facilitate the

targeting of future and existing anti-cancer therapies to tumor

tissues [6,17,18]. Unfortunately, the lack of accurate means to

quantify vascular permeability is a significant hurdle to predicting

its direct influence on drug localization and uptake in vivo.

Classically, vascular permeability has been measured using the

Miles Assay [19]. This assay determines the leakage of a visible dye

from the vasculature into the surrounding tissue spectrophoto-

metrically, with the relative vascular permeability determined as

the ratio of extravasated versus intravascular dye. This assay has

several limitations, however, that preclude its use in many cases. It

is limited to the analysis of a single time-point, which must be

selected empirically from pilot experiments. Furthermore, due to

the wide range of experimental approaches described in the
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literature, results are subject to a high degree of variability and

their repeatability must be considered. Variability can be

mitigated somewhat by using large tissue volumes. Consequently,

these experiments are generally performed in rodent models with

large group sizes [19], which is both expensive and time-

consuming. As the Miles assay is limited to the determination of

average permeability over an entire tissue, localized differences in

vascular permeability, particularly within tumors, cannot be

detected. A dynamic measure of vascular permeability would

allow for the assessment of the impact of regional and temporal

changes in vascular permeability on drug distribution within solid

tumors.

Here, we present an integrated method to visualize and quantify

the real-time dynamics of dextrans in a shell-less chick chorioal-

lantoic (CAM) model. Regional and temporal differences in vessel

permeability within the tumor microenvironment are captured at

high resolution using an intravital imaging approach. The use of

dextrans of different molecular weights allows for the concurrent

evaluation of vascular permeability and vascular structural

integrity. The dynamics of anti-cancer drugs as they move through

the vasculature and into tumor tissues can be mimicked with

dextrans [20]. Dextrans of various molecular weights can mimic

the diffusion of various sized macromolecules including macro-

molecular drug carriers (,70 kDa) and antibodies (,150 kDa)

into the tumor interstitial space. Large dextrans of ,2000 kDa,

are sequestered within the lumen of the tumor vasculature [20].

This work builds upon earlier observations in the shell-less chicken

embryo model, which examined microvascular perselectivity

during normal angiogenesis in the early stages of CAM

development [21]. These authors demonstrated a rapid reduction

in microvascular permeability to FITC-dextrans of varying sizes

(20–150 kDa) between days 4.5–5.5 of the normal 21-day

gestation. They also demonstrated that dextran size correlated

with permeability (dextran-20.dextran-40.dextran-70.dextran-

150 kDa). Furthermore, while these authors report tumor

permeability values for 70 kDa and 150 kDa dextrans, they did

not examine it in the shell-less or ex ovo chick model. The leakage

of small versus large molecular weight dextrans from the

vasculature in this model may provide a high-resolution measure

of vascular permeability predictive of drug localization in vivo.

The CAM is a thin, respiratory tissue for the developing chick

embryo characterized by a dense, highly organized network of

blood vessels [22,23]. The physiological responses of the CAM are

consistent with those of mammalian tissues [24,25] and it has

provided a physiologically relevant setting for angiogenesis

research for more than a century [26,27,28,29,30,31]. The

commercial availability of fertilized eggs, the ease of embryo

culture, and the robustness of the CAM model facilitate large,

statistically powerful studies and make it suitable for high

throughput approaches. The CAM is not fully immunocompetent

in the early embryo [32], and it supports the growth of human and

murine tumor xenografts [33,34,35]. In addition, in the ex ovo

model, the CAM is directly accessible for experimental manipu-

lation and imaging. Paired with a fluorescence microscopy

platform, this model is well-suited for analyzing drug-induced

changes in vascular permeability in tumor xenografts and their

microenvironment.

We demonstrate, using this intravital imaging approach, that

vascular permeability can be manipulated to modulate the

extravasation of small molecules into the local tumor microenvi-

ronment. Treatment with vascular endothelial growth factor

(VEGF) or a permeability enhancing peptide (PEP) fragment of

IL-2 [36] either locally or systemically results in a temporary

enhancement of vascular permeability that can be precisely

monitored over time. We show that this transient increase in

vascular permeability can be exploited to significantly enhance the

accumulation of a chemotherapeutic drug within the tumor.

Methods

In vivo detection of vascular leak
A modified Miles assay [19] was adapted for the CAM model.

Chicken embryos (day 15) were injected intravenously with

phosphate buffered saline (PBS) recombinant human VEGF121

(40 ng, Peprotech) or PEP (0.1 nM, Peregrine Pharmaceuticals) in

50 mL volumes. For local applications, reagents were applied to

the CAM via a small hole in a sterilized glass coverslip (18 mm

diameter). Embryos were then incubated for 2 hours at which time

100 mL of 0.5% Evan’s Blue, 5% BSA in PBS was injected and

embryos were further incubated for 60 minutes. After incubation,

the embryos were perfused with saline. The tissue underlying the

coverslip was removed after the treatment period and blotted dry,

weighed, homogenized and incubated in 200 mL of 100%

formamide to release the extravasated dye. Tissue samples were

homogenized for 30 sec and then incubated for 48 hr at 38uC.

The samples were centrifuged (14000 g for 10 minutes) and

175 mL of supernatant quantified spectrophotometrically against a

formamide blank at 620 nm. Vascular permeability index was

calculated as dye concentration in treated tissue sections/dye

concentration in matched vehicle (PBS) treated samples. For rat

studies, Evans Blue dye solution (10 ml/kg body weight, 0.5%

Evans blue (w/v) in endotoxin-free PBS) was injected intrave-

nously. Ten minutes after injection, each rat (n = 5) was injected

intradermally with 25 mL of PBS into the left ear and 0.15nmoles

of reagent (,25 mL) into the right ear. Thirty minutes later, rats

were anesthetized, their ears photographed, and then perfused

with 100 mL PBS thru a ventricular infusion to remove free

intravascular dye. The ears were removed, the area of extrava-

sation cut out with a biopsy punch (8 mm wide), and then the

tissue was weighed and subsequently placed into 1 mL of

formamide for elution of the Evans Blue dye at 60uC over the

course of 48 hours. The amount of extravasated dye was then

determined spectrophotometrically as described above. The

absolute amount of dye was determined using a standard curve.

Cell Lines and Tumor Xenografts
Epidermoid carcinoma (HEp3) or breast cancer (MDA-MB435)

cells expressing green fluorescent protein (GFP) were maintained

as described previously [37]. For imaging studies involving

xenograft tumors, day 10 chicken embryos had 0.1–0.56106

tumor cells in serum free media applied directly to a section of the

CAM surface that had been lightly abraded with a piece of filter

paper. For embryos being prepared for intravital imaging,

sterilized coverslips were applied on top of the tumor 24 hr post

tumor cell application.

Intravital imaging
Fertilized Dekalb White chicken eggs were received from Cox

Bros Poultry Farm (Maitland, NS) and incubated in a humidified

chamber at 38uC. At day 4, embryos were removed from their

shells using a Dremel tool with a cutting wheel and maintained

under shell-less conditions, in a covered dish in a humidified air

incubator at 38uC and 60% humidity as previously described

[38,39]. On day 10 of development, chicken embryos were

injected with 50 mg of fluorescein isothiocyanate (FITC)-dextran (2

MDa) (Ex/Em 494 nm/521 nm), tetramethyl rhodamine isothio-

cyanate (TRITC)-dextran (158 kDa) (Ex/Em 550 nm/573 nm) or

doxorubicin hydrochloride (Sigma) (Ex/Em 470 nm/556 nm)

Real-Time Measurement of Vascular Permeability
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using a glass microinjection needle into a small venule in the

CAM. Injected volumes were maintained at 50 mL. The natural

fluorescence of doxorubicin was captured using the same filters

(Ex: BP 550/25 (HE), Em: BP 605/70 (HE)) used for TRITC

signal capture. Immediately after injection of the fluorescent

reagents, real-time imaging of the CAM was performed using a

previously described chick-embryo-imaging unit [39,40].

Image capture and processing
Real-time imaging of vascular leak was performed using an

upright epifluorescence microscope with a motorized Z stage

(AxioImager Z1, Carl Zeiss, Thornwood, NY) controlled by

Volocity software (Improvision, Lexington, MA). A four dimen-

sional image series was collected by capturing a mosaic of 3D

image stacks at distinct time-points from regions of interest within

the CAM. Specifically, a 150 nm image stack mosaic was captured

with a 15 nm step size every 15 min for 3–6 hours (13–25 frames).

From this raw data at each time point, the image stack was

cropped to a 100 nm stack containing the in-focus images of the

tumor. This was then flattened into a maximum intensity

projection for the majority of the analyses using Volocity software

(Improvision, Lexington, MA).

Time 0 was defined as the time of the first image capture,

5 minutes after injection of the fluorescent dextran mixture. The

captured images were corrected for drift and rotation using the

Stackreg plugin (Biomedical Imaging Group, http://bigwww.epfl.

ch/) of ImageJ (NIH, Rasband, W.S., ImageJ, National Institutes

of Health, Bethesda, Maryland, USA, http://rsb.info.nih.gov/ij/,

1997–2004). To generate the time-dependent changes in fluores-

cence localization in the CAM, the time 0 image stack was

subtracted from the subsequent time-points using the Image

Calculator function within Image J, hence time 0 intensity was set

at 0. For the generation of surface plots, end point images were

processed using the Interactive 3D Surface Plot plug-in for ImageJ

(Internationale Medieninformatik, Berlin, Germany, http://

rsbweb.nih.gov/ij/plugins/surface-plot-3d.html). Relative intensi-

ties in the surface plots were qualified using a spectrum LUT

normalized from standard 255 levels to 100 levels for ease of

interpretation. The pseudo colored spectrum LUT is based on 255

shades of grey in which a Value 0 = black and a Value

255 = white.

Results

The Miles assay predictably measures vascular
permeability changes in the CAM

To validate the shell-less chicken embryo as a suitable model for

vascular leak analysis, we performed an adapted Miles assay to

assess the impact of permeability enhancing factors VEGF and

PEP. PEP is a 37 amino acid peptide fragment of IL-2 that

possesses the vasopermeability activity of intact IL-2 but lacks its

cytokine activity [36]. A dose response curve for PEP indicated

that maximal dye leakage from vessels resulted from 0.1 nM PEP

treatment (data not shown), and this concentration was used in the

subsequent experiments. A VEGF concentration of 200 nM was

selected for experiments, since this concentration induces

significant vascular leakage in rodent models [41,42,43]. VEGF,

PEP or PBS control was injected into a CAM vein distal to the site

of analysis or applied topically to a defined area of the CAM and

the embryo was incubated for 2 hours. This was followed by a

systemic injection of 0.5% Evan’s Blue, 5% BSA in PBS and

embryos were further incubated for 60 minutes before processing.

The relative vascular leak in PBS, VEGF or PEP-treated vessels

was determined in CAMs of day 15 chicken embryos (n$15 in all

cases). Embryos treated with PBS only showed no visible leakage

of Evan’s Blue dye (Figure 1A, left panel). Leakage of dye was

visibly increased in the CAM following injection of VEGF

relative to control (Figure 1A, right panel). Systemic injections of

VEGF or PEP induced significant increases in CAM vascular

permeability, * p,0.05, compared to PBS vehicle controls

(Figure 1B). When these agents were applied locally to the

surface of the CAM, a significant vascular leak was observed for

VEGF, p,0.05 but not PEP (Figure 1B). This may be due to a

reduced ability of PEP to diffuse into the tissue. Following a five

day growth period of human tumor xenografts MDA-MB435 or

HEp3 on the CAM surface (n.22 in all cases), vascular

permeability was measured following systemic injection of either

PBS or PEP (0.1 nM). The presence of Hep3 tumors, but not

MDA-MB435 tumors, resulted in significant vascular permeabil-

ity when compared to CAM with no tumor xenografts. Injection

of PEP increased vascular permeability in the CAM as expected.

However, PEP injection significantly amplified vascular perme-

ability in the CAM and in CAMs with HEp3 xenografts

(Figure 1C). These findings were consistent with the increase in

vascular leak observed in rat models following the administration

of PEP (Figure S1). We conclude that the chicken embryo model

responds predictably to the systemic administration of perme-

ability factors VEGF and PEP or to in situ factors secreted by a

tumor xenograft and the resulting changes in vascular leak are

quantifiable using the Miles assay.

Changes in vascular permeability can be visualized using
intravital imaging

The ex ovo chicken embryo is an emerging platform for intravital

imaging of angiogenesis and the tumor microenvironment [39].

We have previously demonstrated that dye-labeled dextrans are

not particularly useful for the long-term visualization of vascula-

ture in vivo, as they leak progressively into the interstitium [44,45].

As indicators of changes in vascular permeability and tumor

perfusion, however, dextrans are potentially very useful, since they

mimic endogenous proteins by extravasating from vessels

predictably based on size [20]. To assess this, a 158 kDa

TRITC-dextran was selected for its similar size to immunoglob-

ulins, which passively extravasate through blood vessel walls [20].

Based on the published pharmacokinetics of fluorescently labeled

dextrans [20], we selected a particle size that should extravasate

from the vasculature at a slow but measurable rate, that might be

influenced by vascular permeability factors. Intravital imaging

following systemic injection of VEGF or PEP revealed a significant

induction of vascular leak, manifested by a decrease in TRITC

fluorescence in the vessels over time, and a simultaneous increase

of signal in the surrounding tissues (Figure 2A). Extravasation of

the 158 kDa TRITC-dextran was detectable within 30 minutes

after PEP or VEGF treatment (Figure 2B and Video S1).

Significant levels of vascular leak were not detected in PBS-

treated controls over 3 hours of imaging (Figure 2B). This basic

approach allows for real-time visualization of the vascular network

and the dynamic measurement of temporal changes in vascular

permeability.

Measuring the structural integrity and permeability of
tumor vasculature

The tumor vasculature is heterogeneous, consisting of irregu-

larly formed vessels that are both leaky and often fenestrated [46].

The extravasation of plasma proteins would be expected to occur

via enhanced vascular permeability and leak through discontin-

uous vessel walls [47]. In order to distinguish between these two

Real-Time Measurement of Vascular Permeability

PLoS ONE | www.plosone.org 3 March 2012 | Volume 7 | Issue 3 | e33760



phenomena, we visualized co-injected dextrans of 2000 kDa or

158 kDa simultaneously. The 2000 kDa fluorescent dextran was

selected to mimic large molecular weight blood components, such

as LDL (2500–3500 kDa) and VLDL (10–806104 kDa), which

are largely retained by structurally intact vasculature [20]. We

hypothesized that structurally intact vasculature would retain the

2000 kDa FITC-dextran, and thus it could be used to define the

functional vessel framework in a given region of interest.

Furthermore, we surmised that the change in the ratio of the

158 kDa dextran to the 2000 kDa dextran could provide a

quantitative measure of vascular permeability changes over time at

the tumor site. To this end, 158 kDa TRITC-dextran and

2000 kDa FITC-dextran were systemically co-injected into CAMs

bearing human tumor xenografts with an average weight of 25–

50 mg and a diameter range of 3–8 mm. At the tumor site,

significant vascular leak of the smaller 158 kDa TRITC dextran

was detected after 45 minutes, and after 180 minutes was 3.5-fold

greater in the tumor than in normal tissue distal to the tumor site.

Vascular leak of either the large or small dextrans was nominal in

the absence of a tumor. The increased vascular leak seen in tumor-

bearing CAMs was greatest in regions immediately surrounding or

within the tumor (see Videos S2 and S3). By imaging in real time

the extravasation of these two dextran populations, it is possible to

simultaneously monitor both structural and functional aspects of

Figure 1. The Miles assay measures vascular permeability changes in the CAM. A. Bright field images of CAM vasculature following
injection of Evan’s blue dye subsequent to the systemic administration of PBS (left panel) or VEGF (right panel). Arrows indicate areas of visible
vascular leak. B. When VEGF or PEP is injected intravenously distal to the site of analysis, a significant level of vascular permeability is observed in the
CAM (left). Topically administered VEGF but not PEP induces a significant level of vascular permeability (right). C. Vascular permeability changes in
the CAM were evaluated in the presence of human tumor xenografts. Increased vascular permeability was observed at the tumor site, particularly in
HEp3 tumors. Systemically administered PEP (0.1 nM) further increases vascular permeability. Data are presented as Mean +/2 SEM, n.15 for each
group. * indicates statistical significance, p,0.05, ** p,0.01.
doi:10.1371/journal.pone.0033760.g001

Real-Time Measurement of Vascular Permeability

PLoS ONE | www.plosone.org 4 March 2012 | Volume 7 | Issue 3 | e33760



the vasculature, and to precisely evaluate regional differences in

vascular permeability (Figure 3). Comparison of stitched images

(30–40 frames) from the tumor versus normal tissue shows

significantly more leak in the necrotic tumor core versus the

non-tumor tissue after 60 minutes (2-way ANOVA, p,0.05 and

Bonferroni post-tests for each time point, p,0.05). Necrotic core

vascular leak of the 158 kDa TRITC-dextran was more than 6-

fold greater than leak in tissue distant to the tumor after

180 minutes. Comparison across tissue in the tumor shows

significantly more leak was detected in the necrotic core versus

the tumor after 120 minutes (2-way ANOVA, p,0.05 and

Bonferroni post-tests for each time point, P,0.05). Indeed,

significantly increased extravasation of the 158 kDa dextran was

seen at the tumor core compared to the entire tumor or to normal

Figure 2. Intravital imaging assesses real-time changes in vascular permeability induced by VEGF and PEP. A. A series of
representative images from intravital imaging experiments is shown. An accumulation of fluorescence outside the vasculature over time is seen in
those embryos treated with VEGF or PEP compared to PBS. B. Images were captured and quantified every 15 minutes over a period of 3 hours to
evaluate the extent of vascular leak. Vascular leak values were generated by subtracting time 0 values from subsequent time points. Asterisks indicate
significant leak of dextran from the vasculature (2-way ANOVA, p,0.05 followed by Bonferroni post-tests, (p,0.05)) comparing either PBS vs VEGF, or
PBS vs PEP at each time point.
doi:10.1371/journal.pone.0033760.g002
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vasculature distal from the tumor (Figure 3C). Because the tumor

xenografts in this assay develop on top of the CAM, there was

some concern that the environment may be atypically oxygen rich.

We found that this was unlikely to be the case, as tumors grown in

the CAM underneath a glass coverslip had equivalent vascular

leak levels as those exposed to the air.

Increased vascular permeability enhances drug delivery
to tumor sites

Given that the vascular permeability in tumors is elevated, and that

the vasoactive agents VEGF and PEP enhance vascular permeability,

we hypothesized that the delivery of chemotherapeutic drugs to

tumor sites could be improved using these agents. To test this, we

Figure 3. Assessment of regional permeability and vascular integrity in human tumors. A. Representative fluorescence micrographs from
two human HEp3 tumors displaying peri-tumoral (i) and tumor core (ii) vascular leak are shown with the 2000 kDa FITC-dextran (green) and 158 kDa
TRITC-dextran (red). The normalized images were generated by subtracting the 0 hour image from the 3 hour image, and represent the net vascular
leak. Tumor induced vascular leak is localized primarily to the tumor and especially to the central, necrotic core of the tumor. B. Areas utilized for
regional vascular leak analyses are delineated. The solid circle represents an area of non-tumor tissue; the dashed circle denotes tumor and the
dotted line indicates the avascular necrotic core. C. Quantitation of leak of large (green) and small (red) dextrans is shown for non-tumor tissue, the
entire tumor and the core of the tumor. The relative leak of both dextrans was normalized to time zero; n = 6 for each analysis. Two-way ANOVA,
(p,0.05) followed by Bonferroni post-tests, (p,0.05) was used to assess significant leak of the TRITC-dextran of either tumor versus non-tumour
tissue, and necrotic core versus non-tumour tissue at each timepoint. Timepoints that demonstrated significance are indicated by an asterisk.
doi:10.1371/journal.pone.0033760.g003
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measured the delivery of chemotherapeutic agents to tumor sites in

real time using intravital imaging in the presence and absence of

VEGF (Figure 4A–C). Doxorubicin was detected by its natural

fluorescence using intravital imaging. When doxorubicin was injected

systemically into embryos bearing HEp3-GFP tumor xenografts, its

uptake into tumors in the absence of VEGF increases over

60 minutes, reaching maximum levels after 2 hours (Figure 4D).

When 200 nM VEGF was co-administered with doxorubicin,

doxorubicin uptake by tumor tissues was enhanced over 46within

15 minutes (p,0.05, 2-way ANOVA, Bonferroni post test) compared

to control levels (Figure 4E). At 60 minutes, doxorubicin uptake in

the presence of VEGF was approximately twice that of the controls.

Doxorubicin uptake into normal tissues was also increased by co-

administration of VEGF, but to a lesser extent (40%) than at the

tumor site. Thus, the delivery of doxorubicin to tumor xenografts was

significantly and selectively enhanced by the transient systemic

administration of VEGF.

Discussion

Here, we present a novel approach to visualize and quantitate

hemodynamics and vascular leak in tumors. In contrast to

traditional, endpoint analysis methods, real-time intravital imaging

is sensitive to changes in both permeability and vessel integrity,

and can effectively track rapid and dynamic changes in vascular

permeability. We demonstrate that vascular permeability is

increased in xenograft tumors compared to distal normal tissues,

and that it can be further enhanced by VEGF and the PEP

fragment of IL-2. Utilizing standard epifluorescence microscopy,

we could also monitor localization of the chemotherapeutic,

doxorubicin, which is a naturally fluorescent DNA intercalating

agent, using this approach. We show that the uptake of

systemically administered doxorubicin in xenograft tumors is

enhanced by co-administered VEGF, suggesting that transiently

increasing the vascular leak in tumors using adjuvant therapies can

improve the uptake of chemotherapy at the tumor site.

As an alternative to the model we present here, vascular

dynamics can be visualized in rodent models with the use of

surgically placed skin flaps. Skin flaps have been used to estimate

the vascular leakage of florescent-labeled particles under various

conditions in tumors in rats [48] hamsters [49], and mice [9,20,50]

and to measure vessel regeneration during wound healing [51].

Imaging through skin flaps can predict drug localization [20] and

the influence of treatments on hemodynamics and vascular

Figure 4. Increasing vascular permeability enhances the accumulation of doxorubicin into the tumor. Doxorubicin was injected
intravenously subsequent to administration of PBS or VEGF and its uptake at the tumor site in real time was estimated using its natural fluorescence.
A–B. Representative images of doxorubicin uptake over time, tumors (green) and doxorubicin uptake (red) are shown. C. Heat map of doxorubicin
uptake after 3 hours in control and VEGF-treated tumors. D. Graph showing relative uptake of doxorubicin in the tumor in the presence or absence
of systemic VEGF treatment. E. Graph showing relative uptake of doxorubicin in the normal tissues distal to the tumor in the presence or absence of
systemic VEGF treatment. N = 4 per treatment; data were analyzed by 2 way ANOVA.
doi:10.1371/journal.pone.0033760.g004
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permeability [9,48,49,50]. However, imaging protocols in rodents

can be complicated. Creating the necessary skin flaps requires

microsurgical implantation of a frame in anesthetized animals to

provide a viewable imaging area. This nontrivial procedure can

complicate vascular dynamics and permeability around the

viewing area by inducing inflammation. By comparison, the chick

model described here is relatively easy to maintain while the thin,

vascular and transparent nature of the CAM is amenable to

imaging without surgical intervention. Despite the chick CAM’s

simplicity, our biological findings are consistent with those

reported in more complex models. Therefore, this work further

validates the chick CAM’s use as a tumor model and suggests on

its potential use for semi-high throughput imaging and screening

analysis that should facilitate and compliment the use of more

complex mammalian models.

The chick CAM responds predictably to permeabilization

factors and supports the growth of human tumor xenografts. While

increased vascular permeability induced by VEGF and PEP

occurred within minutes, imaging time courses of up to 72 hours,

can be accommodated in the ex ovo chicken embryo model [39].

Although fluorescent dextrans were used in the methods described

here, the CAM model will likely accommodate alternate molecules

to further expand its utility, such as labeled immunoglobulins or

LDL. These considerations along with the conservation of the key

chicken and human angiogenesis factors make it a useful model to

understand angiogenesis [52,53], drug targeting [54,55], response

to therapeutics [32] and vascular permeability.

Selective modification of the tumor vasculature is emerging as

a powerful means to enhance drug delivery and ultimately

efficacy. Common vasoactive agents used in oncology follow two

principle approaches; perturbation of the tumor vasculature by

vascular disrupting agents (VDAs) or normalization of the tumor

vasculature by anti-angiogenic agents. For example, the tubulin-

binding agent, combretastatin-serine (AVE8062) is a small

molecular weight VDA that causes a rapid and extensive

shutdown of established tumor vasculature. Prior dosing with

AVE8062 can therapeutically synergize with docetaxel, oxalipla-

tin or cisplatin [56,57]. Therapies to normalize the tumor

vasculature, as described by Jain [58], suggest that following

disruption of the immature vessels, the mature tumor vasculature

becomes strengthened and hence more susceptible to drug

therapy. Current strategies typically include the use of VEGF

inhibitors such as bevacizumab or anti-VEGF antibody, which

has shown benefits in animal models and patients [7,59]. Tong

and coworkers showed decreased interstitial hypertension caused

by targeting VEGF produced a morphologically and functionally

‘‘normalized’’ vascular network resulting in pressure gradients

favoring extravasation and hence improving drug penetration in

tumors [7].

Increasing the uptake of co-administered chemotherapies by

overcoming the high interstitial fluid pressures in the tumor

microenvironment has previously been accomplished through

inhibition of the PDGF receptor with imatinib [60,61],

remodeling of the extracellular matrix using collagenase and

hyaluronidase [8,62], vascular normalization using anti-VEGF

antibodies [7] and targeted vasopermeation using PEP [63] (for

review, see Cairns et al., 2006 [64]). While the overall goal is the

same, evidence suggests that similar strategies can have markedly

different consequences. Tong et al. [7] suggest that drug uptake

is improved at the tumor site during vascular normalization

because a pressure gradient is briefly formed across the vessel

walls in tumors. This gradient dissipates rapidly, however,

against the high interstitial fluid pressure in the tumor. They

suggest that this short time window should be sufficient to

improve drug uptake. This contrasts with observations by Khawli

et al. [63], who administer PEP immunoconjugates two hours

prior to chemotherapy to achieve an optimal increase in drug

uptake at the tumor site. Our data indicate that VEGF and PEP

rapidly increase vascular leak, with measurable increases in

dextran efflux over controls that are apparent within 15 minutes

and continue to increase for 3 hours. Interestingly, VEGF

treatment resulted in a different dynamic in doxorubicin uptake,

with an initial spike in doxorubicin accumulation in tumor tissue

that was maintained at a steady level throughout the 3 hours of

analysis. The subtle difference in dextran versus doxorubicin

accumulation may result from size differences between the

dextran and doxorubicin molecules. The larger dextran molecule

likely requires a greater change in permeability and thus

responds more slowly than the smaller doxorubicin molecule.

Clearly, understanding the unique features of tumor blood

dynamics and vascular leak will help tease out these subtle, but

consequential affects to appropriately focus chemotherapeutic

delivery systems.

Given the dynamic interplay of vascular signaling factors and

their individual roles in the modulation of vascular permeability, it

is difficult to predict the impact of adjuvant permeability

enhancement agents on drug uptake at the tumor site. The

approach and the model presented here offer a powerful tool to

investigate mechanisms of vasopermeability in vivo and to screen

the most appropriate strategies for improving drug uptake.

Supporting Information

Figure S1 Comparison to rodent ear model of vascular
permeability. Injection of PEP (0.15 nmoles) into the ears of rats

(n = 5) induces significant levels of vascular permeability similar to

CAM data in Figure 1. As an internal control, PBS was injected

into the corresponding left ear. The ratio of vascular leakage seen

for the reagent ear (right ear) divided by the value for the PBS ear

(left ear) was graphed as a VL index. Data are presented as Mean

+/2 SEM. * indicates statistical significance, p,0.05.

(TIF)

Video S1 Intravital imaging assesses real-time changes
in vascular permeability. Representative intravital imaging

experiments representing the extravasation of 158 kDa dextran

are shown for PBS, VEGF and PEP-treated embryos over 3 hours.

Top panels represent the raw imaging data; bottom panels are

normalized to the first time point to denote leaked dextran.

(AVI)

Video S2 Intravital imaging of vascular permeability in
HEp3 tumor. Intravital imaging experiments of 158 kDa (red)

and 2000 kDa (green) dextran extravasation over time are shown

for human epidermoid carcinoma (HEp3) tumors established in

the CAM. Raw and normalized data are shown.

(AVI)

Video S3 Intravital imaging of vascular permeability in
MDA-MB435 tumor. Intravital imaging experiments of

158 kDa (red) and 2000 kDa (green) dextran extravasation over

time are shown for human breast carcinoma (MDA-MB435)

tumors established in the CAM. Raw and normalized data are

shown.

(AVI)
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