Publications

Publications

Detection of circulating tumor cells using targeted surface-enhanced Raman scattering nanoparticles and magnetic enrichment

By:
Contributors: Robert Paproski, PhD, Ronald Moore Research Group
J Biomed Opt. 2014 May;19(5):056014. doi: 10.1117/1.JBO.19.5.056014.

Abstract

While more than 90% of cancer deaths are due to metastases, our ability to detect circulating tumor cells (CTCs) is limited by low numbers of these cells in the blood and factors confounding specificity of detection. We propose a magnetic enrichment and detection technique for detecting CTCs with high specificity. We targeted both magnetic and surface-enhanced Raman scattering (SERS) nanoparticles to cancer cells. Only cells that are dual-labeled with both kinds of nanoparticles demonstrate an increasing SERS signal over time due to magnetic trapping.

PubMed

Download PDF

Stay Informed

To stay up to date on all the latest news and publications, subscribe to our newsletter!

New platform for prostate cancer diagnosis to be presented at ISEV 2017

The Lewis Research Group will present exciting results about new blood tests for prostate cancer during 3 talks at the upcoming 2017 International Society of Extracellular Vesicles (ISEV) annual meeting in Toronto (May 18-21). ISEV is a global society of researchers studying exosomes and microvesicles, which are the exciting new focus of cancer therapy and diagnosis.

Dr. Desmond Pink will speak about “Microflow cytometry: The Apogee A50 is a sensitive standard tool for extracellular vesicle analyses in liquid biopsies”, Robert Paproski’s presentation is entitled “Using machine learning of extracellular vesicle flow cytometry to build predictive fingerprints for prostate cancer diagnosis”, and Dr. John Lewis will speak about “An extracellular vesicle blood fingerprint distinguishes between patients with indolent and aggressive prostate cancer at diagnosis”.

The team is looking forward to sharing these key advances that were made possible through the APCaRI prospective cohort.

- John Lewis